Hussain H, Tocci G, Woolcot T, Torrelles X, Pang C L, Humphrey D S, Yim C M, Grinter D C, Cabailh G, Bikondoa O, Lindsay R, Zegenhagen J, Michaelides A, Thornton G
London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK.
ESRF, 6 rue Jules Horowitz, F-38000 Grenoble cedex, France.
Nat Mater. 2017 Apr;16(4):461-466. doi: 10.1038/nmat4793. Epub 2016 Nov 14.
The interaction of water with TiO is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO(110) interface with water. This has provided an atomic-level understanding of the water-TiO interaction. However, nearly all of the previous studies of water/TiO interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O and HO on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO photocatalysis.
水与二氧化钛(TiO)的相互作用对其许多实际应用至关重要,包括光催化水分解。自40年前首次证明这一现象以来,已经有大量关于金红石单晶TiO(110)与水界面的研究。这使得人们对水与TiO的相互作用有了原子层面的理解。然而,几乎所有先前关于水/TiO界面的研究都涉及气相中的水。在此,我们探究了液态水与在原子层面预先表征的金红石TiO(110)表面之间的界面结构。利用扫描隧道显微镜和表面X射线衍射来确定该结构,其由一层有序的羟基分子阵列和第二层的分子水组成。静态和动态密度泛函理论计算表明,羟基覆盖层形成的一种可能机制涉及O和HO在部分缺陷表面上的混合吸附。这里得出的定量结构性质为探索TiO光催化所涉及的原子性质及机制提供了基础。