Huang Changming, Dong Liangwei
Opt Lett. 2016 Nov 15;41(22):5194-5197. doi: 10.1364/OL.41.005194.
We address the existence and stability of vortex solitons in a ring-shaped partially-parity-time (pPT) configuration. In sharp contrast to the reported nonlinear modes in PT- or pPT-symmetric systems, stable vortex solitons with different topological charges can be supported by the proposed pPT potential, despite the system always being beyond the symmetry-breaking point. Vortex solitons are characterized by the number of phase singularities which equals the corresponding topological charge. At higher power, unstable higher-charged vortices degenerate into stable vortices with lower charges. Robust nonlinear vortices can be easily excited by an input Gaussian beam. Our results provide, to the best of our knowledge, the first example of stable solitons in a symmetry-breaking system.
我们研究了环形部分宇称时间(pPT)构型中涡旋孤子的存在性和稳定性。与PT或pPT对称系统中报道的非线性模式形成鲜明对比的是,尽管该系统始终处于对称破缺点之外,但所提出的pPT势仍能支持具有不同拓扑电荷的稳定涡旋孤子。涡旋孤子的特征是相位奇点的数量等于相应的拓扑电荷。在较高功率下,不稳定的高电荷涡旋会退化为低电荷的稳定涡旋。通过输入高斯光束可以很容易地激发稳健的非线性涡旋。据我们所知,我们的结果提供了对称破缺系统中稳定孤子的首个实例。