Suppr超能文献

黑色素瘤研究的未来展望:“黑色素瘤桥梁”会议报告。那不勒斯,2015年12月1日至4日

Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.

作者信息

Ascierto Paolo A, Agarwala Sanjiv, Botti Gerardo, Cesano Alessandra, Ciliberto Gennaro, Davies Michael A, Demaria Sandra, Dummer Reinhard, Eggermont Alexander M, Ferrone Soldano, Fu Yang Xin, Gajewski Thomas F, Garbe Claus, Huber Veronica, Khleif Samir, Krauthammer Michael, Lo Roger S, Masucci Giuseppe, Palmieri Giuseppe, Postow Michael, Puzanov Igor, Silk Ann, Spranger Stefani, Stroncek David F, Tarhini Ahmad, Taube Janis M, Testori Alessandro, Wang Ena, Wargo Jennifer A, Yee Cassian, Zarour Hassane, Zitvogel Laurence, Fox Bernard A, Mozzillo Nicola, Marincola Francesco M, Thurin Magdalena

机构信息

IRCCS Istituto Nazionale Tumori, Fondazione "G. Pascale", Naples, Italy.

Unit of Medical Oncology and Innovative Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", Via Mariano Semmola, 80131, Naples, Italy.

出版信息

J Transl Med. 2016 Nov 15;14(1):313. doi: 10.1186/s12967-016-1070-y.

Abstract

The sixth "Melanoma Bridge Meeting" took place in Naples, Italy, December 1st-4th, 2015. The four sessions at this meeting were focused on: (1) molecular and immune advances; (2) combination therapies; (3) news in immunotherapy; and 4) tumor microenvironment and biomarkers. Recent advances in tumor biology and immunology has led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS) of cancer patients. Immunotherapies in particular have emerged as highly successful approaches to treat patients with cancer including melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), bladder cancer, and Hodgkin's disease. Specifically, many clinical successes have been using checkpoint receptor blockade, including T cell inhibitory receptors such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and the programmed cell death-1 (PD-1) and its ligand PD-L1. Despite demonstrated successes, responses to immunotherapy interventions occur only in a minority of patients. Attempts are being made to improve responses to immunotherapy by developing biomarkers. Optimizing biomarkers for immunotherapy could help properly select patients for treatment and help to monitor response, progression and resistance that are critical challenges for the immuno-oncology (IO) field. Importantly, biomarkers could help to design rational combination therapies. In addition, biomarkers may help to define mechanism of action of different agents, dose selection and to sequence drug combinations. However, biomarkers and assays development to guide cancer immunotherapy is highly challenging for several reasons: (i) multiplicity of immunotherapy agents with different mechanisms of action including immunotherapies that target activating and inhibitory T cell receptors (e.g., CTLA-4, PD-1, etc.); adoptive T cell therapies that include tissue infiltrating lymphocytes (TILs), chimeric antigen receptors (CARs), and T cell receptor (TCR) modified T cells; (ii) tumor heterogeneity including changes in antigenic profiles over time and location in individual patient; and (iii) a variety of immune-suppressive mechanisms in the tumor microenvironment (TME) including T regulatory cells (Treg), myeloid derived suppressor cells (MDSC) and immunosuppressive cytokines. In addition, complex interaction of tumor-immune system further increases the level of difficulties in the process of biomarkers development and their validation for clinical use. Recent clinical trial results have highlighted the potential for combination therapies that include immunomodulating agents such as anti-PD-1 and anti-CTLA-4. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors on T cells and other approaches such as adoptive cell transfer are tested for clinical efficacy in melanoma as well. These agents are also being tested in combination with targeted therapies to improve upon shorter-term responses thus far seen with targeted therapy. Various locoregional interventions that demonstrate promising results in treatment of advanced melanoma are also integrated with immunotherapy agents and the combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for melanoma patients' population. This meeting's specific focus was on advances in immunotherapy and combination therapy for melanoma. The importance of understanding of melanoma genomic background for development of novel therapies and biomarkers for clinical application to predict the treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into personalized-medicine approach for treatment of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma. We also discussed the requirements for pre-analytical and analytical as well as clinical validation process as applied to biomarkers for cancer immunotherapy. The concept of the fit-for-purpose marker validation has been introduced to address the challenges and strategies for analytical and clinical validation design for specific assays.

摘要

第六届“黑色素瘤桥梁会议”于2015年12月1日至4日在意大利那不勒斯举行。本次会议的四场会议聚焦于:(1)分子与免疫进展;(2)联合疗法;(3)免疫治疗新进展;以及(4)肿瘤微环境与生物标志物。肿瘤生物学和免疫学的最新进展已促成了新的靶向治疗和免疫治疗药物的研发,这些药物可延长癌症患者的无进展生存期(PFS)和总生存期(OS)。特别是免疫疗法已成为治疗癌症患者(包括黑色素瘤、非小细胞肺癌(NSCLC)、肾细胞癌(RCC)、膀胱癌和霍奇金病)的非常成功的方法。具体而言,许多临床成功案例都采用了检查点受体阻断,包括细胞毒性T淋巴细胞相关抗原4(CTLA-4)、程序性细胞死亡蛋白1(PD-1)及其配体PD-L1等T细胞抑制性受体。尽管已取得显著成功,但免疫治疗干预仅在少数患者中产生反应。目前正在尝试通过开发生物标志物来改善对免疫治疗的反应。优化免疫治疗的生物标志物有助于正确选择治疗患者,并有助于监测反应、进展和耐药性,这些都是免疫肿瘤学(IO)领域的关键挑战。重要的是,生物标志物有助于设计合理的联合疗法。此外,生物标志物可能有助于确定不同药物的作用机制、剂量选择以及药物联合的顺序。然而,由于以下几个原因,开发用于指导癌症免疫治疗的生物标志物和检测方法极具挑战性:(i)具有不同作用机制的免疫治疗药物种类繁多,包括靶向激活和抑制性T细胞受体的免疫疗法(例如CTLA-4、PD-1等);过继性T细胞疗法,包括组织浸润淋巴细胞(TILs)、嵌合抗原受体(CARs)和T细胞受体(TCR)修饰的T细胞;(ii)肿瘤异质性,包括个体患者随时间和位置的抗原谱变化;以及(iii)肿瘤微环境(TME)中的多种免疫抑制机制,包括调节性T细胞(Treg)、髓源性抑制细胞(MDSC)和免疫抑制细胞因子。此外,肿瘤-免疫系统的复杂相互作用进一步增加了生物标志物开发及其临床应用验证过程的难度。最近的临床试验结果突出了包括抗PD-1和抗CTLA-4等免疫调节药物的联合疗法的潜力。针对T细胞上其他免疫抑制(例如Tim-3)或免疫刺激(例如CD137)受体的药物以及过继性细胞转移等其他方法也在黑色素瘤中进行临床疗效测试。这些药物也正在与靶向疗法联合测试,以改善迄今为止靶向疗法所见的短期反应。各种在晚期黑色素瘤治疗中显示出有前景结果的局部区域干预措施也与免疫治疗药物相结合,并且与细胞毒性化疗和血管生成抑制剂的联合正在改变不断演变的治疗选择格局,并正在进行评估以预防或延迟耐药性并进一步提高黑色素瘤患者群体的生存率。本次会议的具体重点是黑色素瘤免疫治疗和联合疗法的进展。理解黑色素瘤基因组背景对于开发新疗法以及临床应用中预测治疗反应的生物标志物的重要性是会议的一个重要组成部分。对生物标志物的总体强调支持了将生物标志物整合到针对黑色素瘤患者整个疾病阶段的个性化医疗方法中的新观念。将从不同肿瘤的肿瘤微环境生物学中获得的知识转化为影响黑色素瘤预后和治疗反应的桥梁。我们还讨论了应用于癌症免疫治疗生物标志物的分析前、分析以及临床验证过程的要求。为应对特定检测分析和临床验证设计的挑战与策略,引入了适用标志物验证的概念。

相似文献

3
Perspectives in Melanoma: meeting report from the Melanoma Bridge (December 2nd - 4th, 2021, Italy).
J Transl Med. 2022 Sep 4;20(1):391. doi: 10.1186/s12967-022-03592-4.
4
Future perspectives in melanoma research "Melanoma Bridge", Napoli, November 30th-3rd December 2016.
J Transl Med. 2017 Nov 16;15(1):236. doi: 10.1186/s12967-017-1341-2.
6
7
Validation of biomarkers to predict response to immunotherapy in cancer: Volume I - pre-analytical and analytical validation.
J Immunother Cancer. 2016 Nov 15;4:76. doi: 10.1186/s40425-016-0178-1. eCollection 2016.

引用本文的文献

4
Holistic view of patients with melanoma of the skin: how can health systems create value and achieve better clinical outcomes?
Ecancermedicalscience. 2019 Aug 27;13:959. doi: 10.3332/ecancer.2019.959. eCollection 2019.
5
Cell death-based treatments of melanoma:conventional treatments and new therapeutic strategies.
Cell Death Dis. 2018 Jan 25;9(2):112. doi: 10.1038/s41419-017-0059-7.
7
Organotypic three-dimensional assays based on human leiomyoma-derived matrices.
Philos Trans R Soc Lond B Biol Sci. 2018 Jan 5;373(1737). doi: 10.1098/rstb.2016.0482.

本文引用的文献

2
Talimogene Laherparepvec in Combination With Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma.
J Clin Oncol. 2016 Aug 1;34(22):2619-26. doi: 10.1200/JCO.2016.67.1529. Epub 2016 Jun 13.
4
Combined IL-21-primed polyclonal CTL plus CTLA4 blockade controls refractory metastatic melanoma in a patient.
J Exp Med. 2016 Jun 27;213(7):1133-9. doi: 10.1084/jem.20152021. Epub 2016 May 30.
5
Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells.
Cytotherapy. 2016 Jul;18(7):893-901. doi: 10.1016/j.jcyt.2016.04.003. Epub 2016 May 17.
6
Glimpse into the future: harnessing autophagy to promote anti-tumor immunity with the DRibbles vaccine.
J Immunother Cancer. 2016 May 17;4:25. doi: 10.1186/s40425-016-0130-4. eCollection 2016.
7
Reversing T-cell Dysfunction and Exhaustion in Cancer.
Clin Cancer Res. 2016 Apr 15;22(8):1856-64. doi: 10.1158/1078-0432.CCR-15-1849.
8
Facilitating T Cell Infiltration in Tumor Microenvironment Overcomes Resistance to PD-L1 Blockade.
Cancer Cell. 2016 Mar 14;29(3):285-296. doi: 10.1016/j.ccell.2016.02.004.
9
Tumor and Host Factors Controlling Antitumor Immunity and Efficacy of Cancer Immunotherapy.
Adv Immunol. 2016;130:75-93. doi: 10.1016/bs.ai.2015.12.003. Epub 2016 Jan 22.
10
GRP94/gp96 in Cancer: Biology, Structure, Immunology, and Drug Development.
Adv Cancer Res. 2016;129:165-90. doi: 10.1016/bs.acr.2015.09.001. Epub 2015 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验