Xia Xuhua
Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada.
Curr Top Med Chem. 2017;17(15):1709-1726. doi: 10.2174/1568026617666161116143440.
Bioinformatic analysis can not only accelerate drug target identification and drug candidate screening and refinement, but also facilitate characterization of side effects and predict drug resistance. High-throughput data such as genomic, epigenetic, genome architecture, cistromic, transcriptomic, proteomic, and ribosome profiling data have all made significant contribution to mechanismbased drug discovery and drug repurposing. Accumulation of protein and RNA structures, as well as development of homology modeling and protein structure simulation, coupled with large structure databases of small molecules and metabolites, paved the way for more realistic protein-ligand docking experiments and more informative virtual screening. I present the conceptual framework that drives the collection of these high-throughput data, summarize the utility and potential of mining these data in drug discovery, outline a few inherent limitations in data and software mining these data, point out news ways to refine analysis of these diverse types of data, and highlight commonly used software and databases relevant to drug discovery.
生物信息学分析不仅可以加速药物靶点识别、药物候选物筛选和优化,还能促进副作用特征描述并预测耐药性。高通量数据,如基因组、表观遗传、基因组结构、顺反组、转录组、蛋白质组和核糖体谱数据,都为基于机制的药物发现和药物再利用做出了重大贡献。蛋白质和RNA结构的积累,以及同源建模和蛋白质结构模拟的发展,再加上小分子和代谢物的大型结构数据库,为更现实的蛋白质-配体对接实验和更具信息性的虚拟筛选铺平了道路。我介绍了驱动这些高通量数据收集的概念框架,总结了在药物发现中挖掘这些数据的效用和潜力,概述了数据和挖掘这些数据的软件中存在的一些固有局限性,指出了改进这些不同类型数据分析的新方法,并强调了与药物发现相关的常用软件和数据库。