Suppr超能文献

模拟小鼠大脑中细胞内代谢物在极高扩散加权下的扩散:长纤维中的扩散(几乎)导致非单指数衰减。

Modeling diffusion of intracellular metabolites in the mouse brain up to very high diffusion-weighting: Diffusion in long fibers (almost) accounts for non-monoexponential attenuation.

作者信息

Palombo Marco, Ligneul Clemence, Valette Julien

机构信息

Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomedicale (I2BM), MIRCen, Fontenay-aux-Roses, France.

Centre National de la Recherche Scientifique (CNRS), Universite Paris-Sud, Universite Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France.

出版信息

Magn Reson Med. 2017 Jan;77(1):343-350. doi: 10.1002/mrm.26548. Epub 2016 Nov 7.

Abstract

PURPOSE

To investigate how intracellular metabolites diffusion measured in vivo up to very high q/b in the mouse brain can be explained in terms of simple geometries.

METHODS

10 mice were scanned using our new STE-LASER sequence, at 11.7 Tesla (T), up to q = 1 μm at diffusion time t = 63.2 ms, corresponding to b = 60 ms/µm². We model cell fibers as randomly oriented cylinders, with radius a and intracellular diffusivity Dintracyl, and fit experimental data as a function of q to estimate Dintracyl and a.

RESULTS

Randomly oriented cylinders account well for measured attenuation, giving fiber radii and Dintracyl in the expected ranges (0.5-1.5 µm and 0.30-0.45 µm/ms, respectively). The only exception is N-acetyl-aspartate (NAA) (extracted a∼0), which we show to be compatible with a small fraction of the NAA pool being confined in highly restricted compartments (with short T).

CONCLUSION

The non-monoexponential signal attenuation of intracellular metabolites in the mouse brain can be described by diffusion in long and thin cylinders, yielding realistic D and fiber diameters. However, this simple model may require small "corrections" for NAA, in the form of a small fraction of the NAA signal originating from a highly restricted compartment. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine.

摘要

目的

研究如何用简单的几何结构来解释在小鼠脑内测量到的高达非常高的q/b值时的细胞内代谢物扩散情况。

方法

使用我们新的STE-LASER序列对10只小鼠进行扫描,磁场强度为11.7特斯拉(T),在扩散时间t = 63.2毫秒时,q值高达1微米,对应b值为60毫秒/微米²。我们将细胞纤维建模为随机取向的圆柱体,半径为a,细胞内扩散系数为Dintracyl,并将实验数据拟合为q的函数,以估计Dintracyl和a。

结果

随机取向的圆柱体能够很好地解释测量到的衰减情况,得出的纤维半径和Dintracyl在预期范围内(分别为0.5 - 1.5微米和0.30 - 0.45微米/毫秒)。唯一的例外是N - 乙酰天门冬氨酸(NAA)(提取的a约为0),我们发现这与一小部分NAA池被限制在高度受限的隔室(短T)中是相符的。

结论

小鼠脑内细胞内代谢物的非单指数信号衰减可以用长而细的圆柱体内的扩散来描述,得出符合实际的D和纤维直径。然而,对于NAA,这个简单模型可能需要以一小部分NAA信号来自高度受限隔室的形式进行小的“修正”。《磁共振医学》,2016年。© 2016国际磁共振医学学会。

相似文献

2
Can we detect the effect of spines and leaflets on the diffusion of brain intracellular metabolites?
Neuroimage. 2017 May 8;182:283-293. doi: 10.1016/j.neuroimage.2017.05.003.
5
On the nature of the NAA diffusion attenuated MR signal in the central nervous system.
Magn Reson Med. 2004 Nov;52(5):1052-9. doi: 10.1002/mrm.20260.
6
Diffusion-weighted SPECIAL improves the detection of J-coupled metabolites at ultrahigh magnetic field.
Magn Reson Med. 2024 Jan;91(1):4-18. doi: 10.1002/mrm.29805. Epub 2023 Sep 28.
9
Assessing potential correlation between T relaxation and diffusion of lactate in the mouse brain.
Magn Reson Med. 2022 Nov;88(5):2277-2284. doi: 10.1002/mrm.29395. Epub 2022 Jul 30.
10
N-acetyl-aspartate levels correlate with intra-axonal compartment parameters from diffusion MRI.
Neuroimage. 2015 Sep;118:334-43. doi: 10.1016/j.neuroimage.2015.05.061. Epub 2015 May 30.

引用本文的文献

1
High-resolution, volumetric diffusion-weighted MR spectroscopic imaging of the brain.
Magn Reson Med. 2025 Aug;94(2):450-469. doi: 10.1002/mrm.30479. Epub 2025 Mar 10.
3
ISMRM Clinical Focus Meeting 2023: "Imaging the Fire in the Brain".
J Magn Reson Imaging. 2025 Apr;61(4):1580-1596. doi: 10.1002/jmri.29587. Epub 2024 Aug 28.
4
Size Sensitivity of Metabolite Diffusion in Macromolecular Crowds.
Nano Lett. 2024 Apr 12;24(16):4801-9. doi: 10.1021/acs.nanolett.3c05100.
5
Event-related functional magnetic resonance spectroscopy.
Neuroimage. 2023 Aug 1;276:120194. doi: 10.1016/j.neuroimage.2023.120194. Epub 2023 May 26.
6
Novel insights into axon diameter and myelin content in late childhood and adolescence.
Cereb Cortex. 2023 May 9;33(10):6435-6448. doi: 10.1093/cercor/bhac515.
8
9
Mapping complex cell morphology in the grey matter with double diffusion encoding MR: A simulation study.
Neuroimage. 2021 Nov 1;241:118424. doi: 10.1016/j.neuroimage.2021.118424. Epub 2021 Jul 24.

本文引用的文献

1
New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo.
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6671-6. doi: 10.1073/pnas.1504327113. Epub 2016 May 25.
3
Glial and axonal changes in systemic lupus erythematosus measured with diffusion of intracellular metabolites.
Brain. 2016 May;139(Pt 5):1447-57. doi: 10.1093/brain/aww031. Epub 2016 Mar 11.
4
What is NODDI and what is its role in Parkinson's assessment?
Expert Rev Neurother. 2016;16(3):241-3. doi: 10.1586/14737175.2016.1142876. Epub 2016 Feb 6.
7
Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle.
J Appl Physiol (1985). 2013 Nov;115(10):1562-71. doi: 10.1152/japplphysiol.00819.2013. Epub 2013 Aug 22.
8
Investigating axonal damage in multiple sclerosis by diffusion tensor spectroscopy.
J Neurosci. 2012 May 9;32(19):6665-9. doi: 10.1523/JNEUROSCI.0044-12.2012.
9
A new sequence for single-shot diffusion-weighted NMR spectroscopy by the trace of the diffusion tensor.
Magn Reson Med. 2012 Dec;68(6):1705-12. doi: 10.1002/mrm.24193. Epub 2012 Feb 2.
10
The effect of age and cerebral ischemia on diffusion-weighted proton MR spectroscopy of the human brain.
AJNR Am J Neuroradiol. 2012 Mar;33(3):563-8. doi: 10.3174/ajnr.A2793. Epub 2011 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验