Palombo Marco, Ligneul Clemence, Hernandez-Garzon Edwin, Valette Julien
Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, F-92260 Fontenay-aux-Roses France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France; Department of Computer Science and Centre for Medical Image Computing, University College of London, Gower Street, London WC1E 6BT, United Kingdom.
Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, F-92260 Fontenay-aux-Roses France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France.
Neuroimage. 2017 May 8;182:283-293. doi: 10.1016/j.neuroimage.2017.05.003.
Prior models used to clarify which aspects of tissue microstructure mostly affect intracellular diffusion and corresponding diffusion-weighted magnetic resonance (DW-MR) signal have focused on relatively simple geometrical descriptions of the cellular microenvironment (spheres, randomly oriented cylinders, etc…), neglecting finer morphological details which may have an important role. Some types of neurons present high density of spines; and astrocytes and macroglial cells processes present leaflets, which may all impact the diffusion process. Here, we use Monte-Carlo simulations of many particles diffusing in cylindrical compartments with secondary structures mimicking spines and leaflets of neuronal and glial cell fibers, to investigate to what extent the diffusion-weighted signal of intracellular molecules is sensitive to spines/leaflets density and length. In order to study the specificity of DW-MR signal to these kinds of secondary structures, beading-like geometry is simulated as "control" deviation from smooth cylinder too. Results suggest that: a) the estimated intracellular tortuosity increases as spines/leaflets density or length (beading amplitude) increase; b) the tortuosity limit is reached for diffusion time t>200 ms for metabolites and t>70 ms for water molecules, suggesting that the effects of these finer morphological details are negligible at t longer than these threshold values; c) fiber diameter is overestimated, while intracellular diffusivity is underestimated, when simple geometrical models based on hollow smooth cylinders are used; d) apparent surface-to-volume, S/V, ratio estimated by linear fit of high frequency OG data appears to be an excellent estimation of the actual S/V ratio, even in the presence of secondary structures, and it increases as spines and leaflets density or length increase (while decreasing as beadings amplitude increases). Comparison between numerical simulations and multimodal metabolites DW-MRS experiments in vivo in mouse brain shows that these fine structures may affect the DW-MRS signal and the derived diffusion metrics consistently with their expected density and geometrical features. This work suggests that finer structures of cell morphology have non-negligible effects on intracellular molecules' diffusion that may be measured by using multimodal DW-MRS approaches, stimulating future developments and applications.
先前用于阐明组织微观结构的哪些方面对细胞内扩散和相应的扩散加权磁共振(DW-MR)信号影响最大的模型,主要集中在对细胞微环境的相对简单的几何描述(球体、随机取向的圆柱体等),而忽略了可能具有重要作用的更精细的形态细节。某些类型的神经元具有高密度的树突棘;星形胶质细胞和大胶质细胞的突起具有薄片结构,这些都可能影响扩散过程。在此,我们使用蒙特卡罗模拟方法,模拟许多粒子在具有模仿神经元和神经胶质细胞纤维的树突棘和薄片的二级结构的圆柱形隔室中扩散,以研究细胞内分子的扩散加权信号对树突棘/薄片密度和长度的敏感程度。为了研究DW-MR信号对这类二级结构的特异性,还模拟了串珠状几何结构作为与光滑圆柱体的“对照”偏差。结果表明:a)随着树突棘/薄片密度或长度(串珠幅度)的增加,估计的细胞内曲折度增加;b)代谢物扩散时间t>200毫秒、水分子扩散时间t>70毫秒时达到曲折度极限,这表明在长于这些阈值的时间t时,这些更精细的形态细节的影响可忽略不计;c)当使用基于空心光滑圆柱体的简单几何模型时,纤维直径被高估,而细胞内扩散率被低估;d)通过高频OG数据的线性拟合估计的表观表面积与体积比S/V,似乎是实际S/V比的极佳估计值,即使存在二级结构时也是如此,并且它随着树突棘和薄片密度或长度的增加而增加(而随着串珠幅度的增加而减小)。小鼠脑内的数值模拟与多模态代谢物DW-MRS实验之间的比较表明,这些精细结构可能会按照其预期的密度和几何特征一致地影响DW-MRS信号和导出的扩散指标。这项工作表明,细胞形态的更精细结构对细胞内分子扩散具有不可忽略的影响,这可以通过使用多模态DW-MRS方法来测量,从而推动未来的发展和应用。