Büsse Sebastian, Hörnschemeyer Thomas, Fischer Christian
Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany; Department of Morphology, Systematics and Evolutionary Biology, J.- F.- Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany.
Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt, Germany; Department of Morphology, Systematics and Evolutionary Biology, J.- F.- Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany.
R Soc Open Sci. 2016 Oct 12;3(10):160563. doi: 10.1098/rsos.160563. eCollection 2016 Oct.
Spinning is a phenomenon not only present in spiders, but also in many other arthropods. The functional morphology and complexity of spinning organs is often poorly understood. Their elements are minute and studying them poses substantial methodological difficulties. This study presents a three-dimensional reconstruction of a silk gland of sp. on cellular level, based on serial sections acquired with serial block-face scanning electron microscopy (SBFSEM) to showcase the power of this method. Previous studies achieved either high resolution to elucidate the ultrastructure or satisfying three-dimensional representations. The high-resolution achieved by SBFSEM can be easily used to reconstruct the three-dimensional ultrastructural organization of cellular structures. The herein investigated spinning apparatus of Embioptera can be taken as an example demonstrating the potential of this method. It was possible to reconstruct a multinucleated silk gland containing 63 nuclei. We focused on the applicability of this method in the field of morphological research and provide a step-by-step guide to the methodology. This will help in applying the method to other arthropod taxa and will help significantly in adapting the method to other animals, animal parts and tissues.
吐丝是一种不仅存在于蜘蛛,也存在于许多其他节肢动物中的现象。人们对吐丝器官的功能形态和复杂性往往了解不足。它们的组成部分非常微小,研究它们存在很大的方法学困难。本研究基于连续块面扫描电子显微镜(SBFSEM)获取的连续切片,在细胞水平上对某种纺足目的丝腺进行了三维重建,以展示该方法的强大功能。以往的研究要么实现了高分辨率以阐明超微结构,要么获得了令人满意的三维图像。SBFSEM实现的高分辨率可轻松用于重建细胞结构的三维超微结构组织。本文所研究的纺足目吐丝器可作为一个例子,说明该方法的潜力。有可能重建一个含有63个细胞核的多核丝腺。我们重点关注该方法在形态学研究领域的适用性,并提供该方法的详细步骤指南。这将有助于将该方法应用于其他节肢动物类群,并将极大地有助于使该方法适用于其他动物、动物器官和组织。