Lohmann Philipp, Stoffels Gabriele, Ceccon Garry, Rapp Marion, Sabel Michael, Filss Christian P, Kamp Marcel A, Stegmayr Carina, Neumaier Bernd, Shah Nadim J, Langen Karl-Josef, Galldiks Norbert
Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52428, Jülich, Germany.
Department of Neurology, University of Cologne, Cologne, Germany.
Eur Radiol. 2017 Jul;27(7):2916-2927. doi: 10.1007/s00330-016-4638-2. Epub 2016 Nov 16.
We investigated the potential of textural feature analysis of O-(2-[F]fluoroethyl)-L-tyrosine (F-FET) PET to differentiate radiation injury from brain metastasis recurrence.
Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic F-FET PET. Tumour-to-brain ratios (TBRs) of F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared.
Diagnostic accuracy increased from 81 % for TBR alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR.
Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic F-FET PET scans.
• Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.
我们研究了O-(2-[F]氟乙基)-L-酪氨酸(F-FET)PET纹理特征分析在鉴别放射性损伤与脑转移复发方面的潜力。
47例脑转移瘤放疗后MRI显示有强化脑病变(n = 54)的患者接受了动态F-FET PET检查。在注射后20 - 40分钟的总图像上测定F-FET摄取的肿瘤与脑比值(TBR)以及62个纹理参数。在注射后0 - 50分钟的动态PET数据上评估示踪剂摄取动力学,即达峰时间(TTP)和时间-活性曲线(TAC)模式。比较所研究参数及其组合在鉴别脑转移复发与放射性损伤方面的诊断准确性。
单独TBR的诊断准确性为81%,与纹理参数粗糙度或短区强调相结合时提高到85%。单独TBR的准确性为83%,与纹理参数粗糙度、短区强调或相关性相结合后提高到85%。对TAC的分析显示,单独动力学模式的准确性为70%,与TBR相结合时提高到83%。
纹理特征分析与TBR相结合可能有潜力提高鉴别脑转移复发与放射性损伤的诊断准确性,而无需进行动态F-FET PET扫描。
• 纹理特征分析提供了关于肿瘤异质性的定量信息 • 纹理特征有助于改善脑转移复发与放射性损伤之间的鉴别 • 纹理特征可能有助于进一步理解肿瘤异质性 • 分析不需要更耗时的动态PET采集。