Martínez Barbero José Pablo, García Francisco Javier Pérez, López Cornejo David, García Cerezo Marta, Gutiérrez Paula María Jiménez, Balderas Luis, Lastra Miguel, Arauzo-Azofra Antonio, Benítez José M, Ramos-Bossini Antonio Jesús Láinez
Advanced Medical Imaging Group (TeCe22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain.
Department of Radiology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain.
Life (Basel). 2025 Apr 5;15(4):606. doi: 10.3390/life15040606.
Differentiating tumor progression from radionecrosis in patients with treated brain glioma represents a significant clinical challenge due to overlapping imaging features. This study aimed to develop and evaluate a machine learning model that integrates radiomics features and T2*-weighted Dynamic Susceptibility Contrast MRI perfusion (DSC MRI) parameters to improve diagnostic accuracy in distinguishing these entities. A retrospective cohort of 46 patients (25 with confirmed radionecrosis, 21 with glioma progression) was analyzed. From lesion segmentation on DSC MRI, 851 radiomics features were extracted using PyRadiomics, alongside seven perfusion parameters (e.g., relative cerebral blood volume, time to peak) obtained from time-intensity curves (TICs). These features were combined into a single dataset and 14 classification algorithms were evaluated with GroupKFold cross-validation (k = 4). The top-performing model was selected based on predictive area under the curve (AUC) yield. The Logistic Regression classifier achieved the highest performance, with an AUC of 0.88, followed by multilayer perceptron and AdaBoost with AUC values of 0.85 and 0.79, respectively. The precision values were 72%, 74%, and 78% for the three models, respectively, while the accuracy was 63%, 70%, and 71%. Key predictive variables included radiomics features like wavelet-HHH_firstorder_Mean and mean normalized TIC values. Our combined approach integrating radiomics and DSC MRI parameters shows strong potential for distinguishing radionecrosis from glioma progression. However, further validation with larger cohorts is essential to confirm the generalizability of this approach.
由于成像特征重叠,鉴别经治疗的脑胶质瘤患者的肿瘤进展与放射性坏死是一项重大的临床挑战。本研究旨在开发和评估一种机器学习模型,该模型整合放射组学特征和T2 *加权动态磁敏感对比磁共振成像灌注(DSC MRI)参数,以提高鉴别这些病变的诊断准确性。对46例患者(25例确诊为放射性坏死,21例为胶质瘤进展)的回顾性队列进行了分析。通过对DSC MRI上的病变进行分割,使用PyRadiomics提取了851个放射组学特征,同时从时间-强度曲线(TIC)中获得了七个灌注参数(例如,相对脑血容量、达峰时间)。这些特征被合并到一个数据集中,并使用GroupKFold交叉验证(k = 4)对14种分类算法进行了评估。根据曲线下预测面积(AUC)产量选择表现最佳的模型。逻辑回归分类器表现最佳,AUC为0.88,其次是多层感知器和AdaBoost,AUC值分别为0.85和0.79。这三种模型的精确率分别为72%、74%和78%,而准确率分别为63%、70%和71%。关键预测变量包括小波-HHH_firstorder_Mean等放射组学特征和平均归一化TIC值。我们整合放射组学和DSC MRI参数的联合方法在区分放射性坏死与胶质瘤进展方面显示出强大的潜力。然而,需要用更大的队列进行进一步验证,以确认该方法的普遍性。