Suppr超能文献

参与哺乳动物分泌途径中N-连接聚糖成熟的GH47 α-甘露糖苷酶的底物识别与催化作用。

Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway.

作者信息

Xiang Yong, Karaveg Khanita, Moremen Kelley W

机构信息

Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602.

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602.

出版信息

Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7890-E7899. doi: 10.1073/pnas.1611213113. Epub 2016 Nov 17.

Abstract

Maturation of Asn-linked oligosaccharides in the eukaryotic secretory pathway requires the trimming of nascent glycan chains to remove all glucose and several mannose residues before extension into complex-type structures on the cell surface and secreted glycoproteins. Multiple glycoside hydrolase family 47 (GH47) α-mannosidases, including endoplasmic reticulum (ER) α-mannosidase I (ERManI) and Golgi α-mannosidase IA (GMIA), are responsible for cleavage of terminal α1,2-linked mannose residues to produce uniquely trimmed oligomannose isomers that are necessary for ER glycoprotein quality control and glycan maturation. ERManI and GMIA have similar catalytic domain structures, but each enzyme cleaves distinct residues from tribranched oligomannose glycan substrates. The structural basis for branch-specific cleavage by ERManI and GMIA was explored by replacing an essential enzyme-bound Ca ion with a lanthanum (La) ion. This ion swap led to enzyme inactivation while retaining high-affinity substrate interactions. Cocrystallization of La-bound enzymes with ManGlcNAc substrate analogs revealed enzyme-substrate complexes with distinct modes of glycan branch insertion into the respective enzyme active-site clefts. Both enzymes had glycan interactions that extended across the entire glycan structure, but each enzyme engaged a different glycan branch and used different sets of glycan interactions. Additional mutagenesis and time-course studies of glycan cleavage probed the structural basis of enzyme specificity. The results provide insights into the enzyme catalytic mechanisms and reveal structural snapshots of the sequential glycan cleavage events. The data also indicate that full steric access to glycan substrates determines the efficiency of mannose-trimming reactions that control the conversion to complex-type structures in mammalian cells.

摘要

真核生物分泌途径中与天冬酰胺连接的寡糖的成熟需要对新生聚糖链进行修剪,以去除所有葡萄糖和几个甘露糖残基,然后才能在细胞表面和分泌的糖蛋白上延伸形成复合型结构。多种糖苷水解酶家族47(GH47)α-甘露糖苷酶,包括内质网(ER)α-甘露糖苷酶I(ERManI)和高尔基体α-甘露糖苷酶IA(GMIA),负责切割末端α1,2-连接的甘露糖残基,以产生独特修剪的寡甘露糖异构体,这对于内质网糖蛋白质量控制和聚糖成熟是必需的。ERManI和GMIA具有相似的催化结构域结构,但每种酶从三叉分支的寡甘露糖聚糖底物上切割不同的残基。通过用镧(La)离子取代必需的酶结合钙离子,探索了ERManI和GMIA进行分支特异性切割的结构基础。这种离子交换导致酶失活,同时保留高亲和力的底物相互作用。将结合La的酶与ManGlcNAc底物类似物共结晶,揭示了酶-底物复合物,其中聚糖分支以不同模式插入各自的酶活性位点裂隙中。两种酶都具有跨越整个聚糖结构的聚糖相互作用,但每种酶与不同的聚糖分支结合并使用不同的聚糖相互作用组。对聚糖切割的额外诱变和时间进程研究探讨了酶特异性的结构基础。结果提供了对酶催化机制的见解,并揭示了连续聚糖切割事件的结构快照。数据还表明,对聚糖底物的完全空间可及性决定了控制哺乳动物细胞中向复合型结构转化的甘露糖修剪反应的效率。

相似文献

1
Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7890-E7899. doi: 10.1073/pnas.1611213113. Epub 2016 Nov 17.
2
Family 47 alpha-mannosidases in N-glycan processing.
Methods Enzymol. 2006;415:31-46. doi: 10.1016/S0076-6879(06)15003-X.
7
Importance of glycosidases in mammalian glycoprotein biosynthesis.
Biochim Biophys Acta. 1999 Dec 6;1473(1):96-107. doi: 10.1016/s0304-4165(99)00171-3.
8
Mannosidase IA is in Quality Control Vesicles and Participates in Glycoprotein Targeting to ERAD.
J Mol Biol. 2016 Aug 14;428(16):3194-3205. doi: 10.1016/j.jmb.2016.04.020. Epub 2016 Apr 21.
9
Enterococcus faecalis α1-2-mannosidase (EfMan-I): an efficient catalyst for glycoprotein N-glycan modification.
FEBS Lett. 2020 Feb;594(3):439-451. doi: 10.1002/1873-3468.13618. Epub 2019 Oct 8.

引用本文的文献

1
N-glycans in lung tissue specimens: a prospective target for enhanced cancer diagnosis and prognosis.
J Transl Med. 2025 Aug 14;23(1):918. doi: 10.1186/s12967-025-06904-6.
3
Structural glycobiology - from enzymes to organelles.
Biochem Soc Trans. 2025 Jan 31;53(1):83-100. doi: 10.1042/BST20241119.
4
Elevated high-mannose N-glycans hamper endometrial decidualization.
iScience. 2023 Oct 14;26(11):108170. doi: 10.1016/j.isci.2023.108170. eCollection 2023 Nov 17.
5
Nascent Proteome and Glycoproteome Reveal the Inhibition Role of ALG1 in Hepatocellular Carcinoma Cell Migration.
Phenomics. 2022 May 14;2(4):230-241. doi: 10.1007/s43657-022-00050-5. eCollection 2022 Aug.
6
A universal GlycoDesign for lysosomal replacement enzymes to improve circulation time and biodistribution.
Front Bioeng Biotechnol. 2023 Feb 24;11:1128371. doi: 10.3389/fbioe.2023.1128371. eCollection 2023.
7
Mitotic phosphorylation inhibits the Golgi mannosidase MAN1A1.
Cell Rep. 2022 Nov 22;41(8):111679. doi: 10.1016/j.celrep.2022.111679.
8
10
Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation.
Biochemistry. 2021 Jul 13;60(27):2153-2169. doi: 10.1021/acs.biochem.1c00279. Epub 2021 Jul 2.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
3D implementation of the symbol nomenclature for graphical representation of glycans.
Glycobiology. 2016 Aug;26(8):786-7. doi: 10.1093/glycob/cww076. Epub 2016 Aug 11.
3
Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G.
Cell. 2016 May 5;165(4):813-26. doi: 10.1016/j.cell.2016.04.010. Epub 2016 Apr 21.
4
Five Questions (with their Answers) on ER-Associated Degradation.
Traffic. 2016 Apr;17(4):341-50. doi: 10.1111/tra.12373. Epub 2016 Feb 18.
5
N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle.
Traffic. 2016 Apr;17(4):308-26. doi: 10.1111/tra.12358. Epub 2016 Jan 10.
6
Analysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the Golgi.
Glycobiology. 2015 Dec;25(12):1335-49. doi: 10.1093/glycob/cwv058. Epub 2015 Aug 3.
7
Enhanced Aromatic Sequons Increase Oligosaccharyltransferase Glycosylation Efficiency and Glycan Homogeneity.
Chem Biol. 2015 Aug 20;22(8):1052-62. doi: 10.1016/j.chembiol.2015.06.017. Epub 2015 Jul 16.
9
N-linked sugar-regulated protein folding and quality control in the ER.
Semin Cell Dev Biol. 2015 May;41:79-89. doi: 10.1016/j.semcdb.2014.12.001. Epub 2014 Dec 19.
10
Structural and energetic basis of carbohydrate-aromatic packing interactions in proteins.
J Am Chem Soc. 2013 Jul 3;135(26):9877-84. doi: 10.1021/ja4040472. Epub 2013 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验