Xiang Yong, Karaveg Khanita, Moremen Kelley W
Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602.
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7890-E7899. doi: 10.1073/pnas.1611213113. Epub 2016 Nov 17.
Maturation of Asn-linked oligosaccharides in the eukaryotic secretory pathway requires the trimming of nascent glycan chains to remove all glucose and several mannose residues before extension into complex-type structures on the cell surface and secreted glycoproteins. Multiple glycoside hydrolase family 47 (GH47) α-mannosidases, including endoplasmic reticulum (ER) α-mannosidase I (ERManI) and Golgi α-mannosidase IA (GMIA), are responsible for cleavage of terminal α1,2-linked mannose residues to produce uniquely trimmed oligomannose isomers that are necessary for ER glycoprotein quality control and glycan maturation. ERManI and GMIA have similar catalytic domain structures, but each enzyme cleaves distinct residues from tribranched oligomannose glycan substrates. The structural basis for branch-specific cleavage by ERManI and GMIA was explored by replacing an essential enzyme-bound Ca ion with a lanthanum (La) ion. This ion swap led to enzyme inactivation while retaining high-affinity substrate interactions. Cocrystallization of La-bound enzymes with ManGlcNAc substrate analogs revealed enzyme-substrate complexes with distinct modes of glycan branch insertion into the respective enzyme active-site clefts. Both enzymes had glycan interactions that extended across the entire glycan structure, but each enzyme engaged a different glycan branch and used different sets of glycan interactions. Additional mutagenesis and time-course studies of glycan cleavage probed the structural basis of enzyme specificity. The results provide insights into the enzyme catalytic mechanisms and reveal structural snapshots of the sequential glycan cleavage events. The data also indicate that full steric access to glycan substrates determines the efficiency of mannose-trimming reactions that control the conversion to complex-type structures in mammalian cells.
真核生物分泌途径中与天冬酰胺连接的寡糖的成熟需要对新生聚糖链进行修剪,以去除所有葡萄糖和几个甘露糖残基,然后才能在细胞表面和分泌的糖蛋白上延伸形成复合型结构。多种糖苷水解酶家族47(GH47)α-甘露糖苷酶,包括内质网(ER)α-甘露糖苷酶I(ERManI)和高尔基体α-甘露糖苷酶IA(GMIA),负责切割末端α1,2-连接的甘露糖残基,以产生独特修剪的寡甘露糖异构体,这对于内质网糖蛋白质量控制和聚糖成熟是必需的。ERManI和GMIA具有相似的催化结构域结构,但每种酶从三叉分支的寡甘露糖聚糖底物上切割不同的残基。通过用镧(La)离子取代必需的酶结合钙离子,探索了ERManI和GMIA进行分支特异性切割的结构基础。这种离子交换导致酶失活,同时保留高亲和力的底物相互作用。将结合La的酶与ManGlcNAc底物类似物共结晶,揭示了酶-底物复合物,其中聚糖分支以不同模式插入各自的酶活性位点裂隙中。两种酶都具有跨越整个聚糖结构的聚糖相互作用,但每种酶与不同的聚糖分支结合并使用不同的聚糖相互作用组。对聚糖切割的额外诱变和时间进程研究探讨了酶特异性的结构基础。结果提供了对酶催化机制的见解,并揭示了连续聚糖切割事件的结构快照。数据还表明,对聚糖底物的完全空间可及性决定了控制哺乳动物细胞中向复合型结构转化的甘露糖修剪反应的效率。