Suppr超能文献

屎肠球菌α1-2-甘露糖苷酶(EfMan-I):一种用于糖蛋白 N-聚糖修饰的有效催化剂。

Enterococcus faecalis α1-2-mannosidase (EfMan-I): an efficient catalyst for glycoprotein N-glycan modification.

机构信息

Department of Chemistry, University of California, Davis, CA, USA.

Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

出版信息

FEBS Lett. 2020 Feb;594(3):439-451. doi: 10.1002/1873-3468.13618. Epub 2019 Oct 8.

Abstract

While multiple α 1-2-mannosidases are necessary for glycoprotein N-glycan maturation in vertebrates, a single bacterial α1-2-mannosidase can be sufficient to cleave all α1-2-linked mannose residues in host glycoprotein N-glycans. We report here the characterization and crystal structure of a new α1-2-mannosidase (EfMan-I) from Enterococcus faecalis, a Gram-positive opportunistic human pathogen. EfMan-I catalyzes the cleavage of α1-2-mannose from not only oligomannoses but also high-mannose-type N-glycans on glycoproteins. Its 2.15 Å resolution crystal structure reveals a two-domain enzyme fold similar to other CAZy GH92 mannosidases. An unexpected potassium ion was observed bridging two domains near the active site. These findings support EfMan-I as an effective catalyst for in vitro N-glycan modification of glycoproteins with high-mannose-type N-glycans.

摘要

虽然脊椎动物中多种 α 1-2-甘露糖苷酶对于糖蛋白 N-聚糖的成熟是必需的,但单个细菌 α 1-2-甘露糖苷酶就足以切割宿主糖蛋白 N-聚糖中所有的 α1-2 连接的甘露糖残基。本文报道了来自粪肠球菌的新型 α 1-2-甘露糖苷酶(EfMan-I)的特性和晶体结构,粪肠球菌是一种革兰氏阳性机会性病原体。EfMan-I 不仅可以催化寡甘露糖,还可以催化糖蛋白上高甘露糖型 N-聚糖中 α1-2-甘露糖的切割。其 2.15 Å 分辨率的晶体结构揭示了一种类似于其他 CAZy GH92 甘露糖苷酶的双结构域酶折叠。在靠近活性位点的地方观察到一个意想不到的钾离子桥接两个结构域。这些发现支持 EfMan-I 作为有效催化剂,用于体外修饰具有高甘露糖型 N-聚糖的糖蛋白。

相似文献

1
Enterococcus faecalis α1-2-mannosidase (EfMan-I): an efficient catalyst for glycoprotein N-glycan modification.
FEBS Lett. 2020 Feb;594(3):439-451. doi: 10.1002/1873-3468.13618. Epub 2019 Oct 8.
3
Structural and functional characterization of a multi-domain GH92 α-1,2-mannosidase from Neobacillus novalis.
Acta Crystallogr D Struct Biol. 2023 May 1;79(Pt 5):387-400. doi: 10.1107/S2059798323001663. Epub 2023 Apr 18.
4
Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7890-E7899. doi: 10.1073/pnas.1611213113. Epub 2016 Nov 17.
10
ER-resident protein 46 (ERp46) triggers the mannose-trimming activity of ER degradation-enhancing α-mannosidase-like protein 3 (EDEM3).
J Biol Chem. 2018 Jul 6;293(27):10663-10674. doi: 10.1074/jbc.RA118.003129. Epub 2018 May 21.

引用本文的文献

1
Poking at probiotic mechanisms and microbial implications in cancer prevention and treatment.
Gut. 2024 Aug 8;73(9):1408-1409. doi: 10.1136/gutjnl-2024-332560.
4
Structural and functional characterization of a multi-domain GH92 α-1,2-mannosidase from Neobacillus novalis.
Acta Crystallogr D Struct Biol. 2023 May 1;79(Pt 5):387-400. doi: 10.1107/S2059798323001663. Epub 2023 Apr 18.
5
Glycoprotein In Vitro N-Glycan Processing Using Enzymes Expressed in .
Molecules. 2023 Mar 18;28(6):2753. doi: 10.3390/molecules28062753.
6
Plant -glycan breakdown by human gut .
Proc Natl Acad Sci U S A. 2022 Sep 27;119(39):e2208168119. doi: 10.1073/pnas.2208168119. Epub 2022 Sep 19.
8
Analysis of fungal high-mannose structures using CAZymes.
Glycobiology. 2022 Mar 31;32(4):304-313. doi: 10.1093/glycob/cwab127.

本文引用的文献

1
Bacteroides thetaiotaomicron generates diverse α-mannosidase activities through subtle evolution of a distal substrate-binding motif.
Acta Crystallogr D Struct Biol. 2018 May 1;74(Pt 5):394-404. doi: 10.1107/S2059798318002942. Epub 2018 Apr 24.
2
Chemoenzymatic Glycan Remodeling of Natural and Recombinant Glycoproteins.
Methods Enzymol. 2017;597:265-281. doi: 10.1016/bs.mie.2017.06.006. Epub 2017 Jul 5.
3
CheckMyMetal: a macromolecular metal-binding validation tool.
Acta Crystallogr D Struct Biol. 2017 Mar 1;73(Pt 3):223-233. doi: 10.1107/S2059798317001061. Epub 2017 Feb 22.
4
DrawGlycan-SNFG: a robust tool to render glycans and glycopeptides with fragmentation information.
Glycobiology. 2017 Mar 15;27(3):200-205. doi: 10.1093/glycob/cww115.
5
Model systems for the study of Enterococcal colonization and infection.
Virulence. 2017 Nov 17;8(8):1525-1562. doi: 10.1080/21505594.2017.1279766. Epub 2017 May 4.
6
Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence.
PLoS Pathog. 2017 Jan 5;13(1):e1006090. doi: 10.1371/journal.ppat.1006090. eCollection 2017 Jan.
7
The crystal structure of the endoglucanase Cel10, a family 8 glycosyl hydrolase from Klebsiella pneumoniae.
Acta Crystallogr F Struct Biol Commun. 2016 Dec 1;72(Pt 12):870-876. doi: 10.1107/S2053230X16017891. Epub 2016 Nov 25.
8
Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7890-E7899. doi: 10.1073/pnas.1611213113. Epub 2016 Nov 17.
9
Posttranslational Modifications and the Immunogenicity of Biotherapeutics.
J Immunol Res. 2016;2016:5358272. doi: 10.1155/2016/5358272. Epub 2016 Apr 14.
10
Plant protein glycosylation.
Glycobiology. 2016 Sep;26(9):926-939. doi: 10.1093/glycob/cww023. Epub 2016 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验