Tauber Justin, Higler Ruben, Sprakel Joris
Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands.
Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13660-13665. doi: 10.1073/pnas.1609595113. Epub 2016 Nov 17.
The dynamics of interstitial dopants govern the properties of a wide variety of doped crystalline materials. To describe the hopping dynamics of such interstitial impurities, classical approaches often assume that dopant particles do not interact and travel through a static potential energy landscape. Here we show, using computer simulations, how these assumptions and the resulting predictions from classical Eyring-type theories break down in entropically stabilized body-centered cubic (BCC) crystals due to the thermal excitations of the crystalline matrix. Deviations are particularly severe close to melting where the lattice becomes weak and dopant dynamics exhibit strongly localized and heterogeneous dynamics. We attribute these anomalies to the failure of both assumptions underlying the classical description: (i) The instantaneous potential field experienced by dopants becomes largely disordered due to thermal fluctuations and (ii) elastic interactions cause strong dopant-dopant interactions even at low doping fractions. These results illustrate how describing nonclassical dopant dynamics requires taking the effective disordered potential energy landscape of strongly excited crystals and dopant-dopant interactions into account.
间隙掺杂剂的动力学特性决定了多种掺杂晶体材料的性质。为了描述此类间隙杂质的跳跃动力学,经典方法通常假定掺杂粒子之间不相互作用,且在静态势能场中移动。在此,我们通过计算机模拟展示了,由于晶体基质的热激发,这些假设以及经典艾林型理论所得出的预测在熵稳定的体心立方(BCC)晶体中是如何失效的。在接近熔点时,偏差尤为严重,此时晶格变得脆弱,掺杂剂动力学呈现出强烈的局域化和非均匀动力学。我们将这些异常现象归因于经典描述所基于的两个假设的失效:(i)由于热涨落,掺杂剂所经历的瞬时势场变得高度无序;(ii)即使在低掺杂比例下,弹性相互作用也会导致强烈的掺杂剂 - 掺杂剂相互作用。这些结果表明,描述非经典掺杂剂动力学需要考虑强激发晶体的有效无序势能场以及掺杂剂 - 掺杂剂相互作用。