Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK.
Department of Chemistry, University of Washington, Seattle, WA, USA.
Science. 2016 Nov 18;354(6314):861-865. doi: 10.1126/science.aaf9717. Epub 2016 Oct 20.
We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FACsSnPbI, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FACsPb(IBr) material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable "all-perovskite" thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.
我们展示了具有理想匹配能带隙的四端和双端钙钛矿-钙钛矿串联太阳能电池。我们开发了一种红外吸收 1.2 电子伏特带隙钙钛矿,FACsSnPbI,可提供 14.8%的效率。通过将这种材料与更宽能带隙的 FACsPb(IBr)材料结合,我们实现了单片双端串联效率为 17.0%,开路电压大于 1.65 伏特。我们还制作了机械堆叠的四端串联电池,并获得了 20.3%的效率。值得注意的是,我们发现我们的红外吸收钙钛矿电池表现出优异的热稳定性和空气稳定性,这是以前的锡基钙钛矿所没有的。这种器件结构和材料集将使“全钙钛矿”薄膜太阳能电池能够以最低的成本在长期内达到最高的效率。