Suppr超能文献

机器学习驱动的关于串联太阳能电池中相稳定的FA Cs Pb(I Br)钙钛矿的见解。

Machine Learning-Driven Insights for Phase-Stable FA Cs Pb(I Br ) Perovskites in Tandem Solar Cells.

作者信息

Luo Ran, Jia Xiangkun, Niu Xiuxiu, Liu Shunchang, Guo Xiao, Li Jia, Zhao Zhi-Jian, Hou Yi, Gong Jinlong

机构信息

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.

Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China.

出版信息

JACS Au. 2025 Mar 13;5(4):1771-1780. doi: 10.1021/jacsau.5c00033. eCollection 2025 Apr 28.

Abstract

The inherent chemical tunability of perovskite materials has spurred extensive research into composition engineering within the perovskite community. However, identifying the optimal composition across a broad range of variations still remains a significant challenge. Conventional trial-and-error methods are prohibitively expensive and environmentally taxing for comprehensive screening. Here, we employed machine learning-accelerated atomic simulation to guide the design of stable perovskite solar cells absorbers. Our approach entailed training of a neural network (NN) potential using data generated from first-principles calculations, yielding a perovskite NN potential exhibiting high accuracy. Utilizing this NN potential, we constructed a phase diagram for FA Cs Pb(I Br ) (where 0 ≤ ≤ 1 and 0 ≤ ≤ 1, FA denotes formamidinium cation). Integrating this with a band gap diagram, we successfully identified global optimal perovskite compositions for tandem applications with 1.7 and 1.8 eV band gaps. We have identified that all FA Cs Pb(I Br ) with >1.8 eV band gaps are thermodynamically vulnerable to phase segregation and developed a strategy to stabilize thermodynamically unstable phases by suppressing phase segregation kinetics. Finally, theoretical predictions were confirmed by the corresponding experiments. Our results suggest that creating perovskites/Si tandem solar cells with 1.7 eV FA Cs Pb(I Br ) encounters less severe challenges in addressing phase segregation issues than perovskites/perovskites tandem solar cells with 1.8 eV FA Cs Pb(I Br ).

摘要

钙钛矿材料固有的化学可调性激发了钙钛矿领域对成分工程的广泛研究。然而,在广泛的变化范围内确定最佳成分仍然是一项重大挑战。传统的试错方法对于全面筛选而言成本过高且对环境造成负担。在此,我们采用机器学习加速的原子模拟来指导稳定的钙钛矿太阳能电池吸收体的设计。我们的方法包括使用从第一性原理计算生成的数据训练神经网络(NN)势,从而得到具有高精度的钙钛矿NN势。利用这个NN势,我们构建了FA Cs Pb(I Br )的相图(其中0 ≤ ≤ 1且0 ≤ ≤ 1,FA表示甲脒阳离子)。将其与带隙图相结合,我们成功确定了用于带隙为1.7和1.8 eV的串联应用的全局最优钙钛矿成分。我们发现所有带隙大于1.8 eV的FA Cs Pb(I Br )在热力学上易发生相分离,并开发了一种通过抑制相分离动力学来稳定热力学不稳定相的策略。最后,相应的实验证实了理论预测。我们的结果表明,与具有1.8 eV FA Cs Pb(I Br )的钙钛矿/钙钛矿串联太阳能电池相比,制造具有1.7 eV FA Cs Pb(I Br )的钙钛矿/硅串联太阳能电池在解决相分离问题上面临的挑战较小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6da/12042035/76f4fce2a490/au5c00033_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验