Lin Ying, Northrop William F, Li Xuesong
Opt Express. 2016 Nov 14;24(23):26942-26947. doi: 10.1364/OE.24.026942.
This work introduces a Markov Chain solution to model photon multiple scattering through turbid slabs via anisotropic scattering process, i.e., Mie scattering. Results show that the proposed Markov Chain model agree with commonly used Monte Carlo simulation for various mediums such as medium with non-uniform phase functions and absorbing medium. The proposed Markov Chain solution method successfully converts the complex multiple scattering problem with practical phase functions into a matrix form and solves transmitted/reflected photon angular distributions by matrix multiplications. Such characteristics would potentially allow practical inversions by matrix manipulation or stochastic algorithms where widely applied stochastic methods such as Monte Carlo simulations usually fail, and thus enable practical diagnostics reconstructions such as medical diagnosis, spray analysis, and atmosphere sciences.
这项工作引入了一种马尔可夫链解决方案,通过各向异性散射过程(即米氏散射)对光子在混浊平板中的多次散射进行建模。结果表明,所提出的马尔可夫链模型与常用的蒙特卡罗模拟方法在各种介质(如具有非均匀相位函数的介质和吸收介质)中是一致的。所提出的马尔可夫链求解方法成功地将具有实际相位函数的复杂多次散射问题转化为矩阵形式,并通过矩阵乘法求解透射/反射光子角分布。这些特性可能允许通过矩阵操作或随机算法进行实际反演,而在这些情况下,诸如蒙特卡罗模拟等广泛应用的随机方法通常会失败,从而实现诸如医学诊断、喷雾分析和大气科学等实际诊断重建。