Bai Jia, Liu Maili, Pielak Gary J, Li Conggang
Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.
Graduate University of Chinese Academy of Sciences, Beijing, 100029, P.R. China.
Chemphyschem. 2017 Jan 4;18(1):55-58. doi: 10.1002/cphc.201601097. Epub 2016 Dec 2.
The intracellular milieu contains upwards of 400 g of macromolecules per liter. This crowding is thought to have a larger influence on intrinsically disordered proteins, whose chains are expanded, than on compact globular proteins. Classic theories of macromolecular crowding predict that increasing excluded volume effects will lead disordered proteins to compaction, and a great deal of data, from both simulation and experiments support this idea. We used nuclear magnetic resonance, circular dichroism, and fluorescence spectroscopies to characterize the structure and fibrillation of α-synuclein, an intrinsically disordered protein implicated in Parkinson's disease, using Ficoll70, its monomer sucrose and bovine serum albumin as crowding agents. Surprisingly, volume exclusion induced by high concentrations of macromolecules may not be the main reason for the compaction of α-synuclein. Our results indicate that all aspects crowding must be considered to understand protein conformation under crowded conditions.
细胞内环境每升含有超过400克的大分子。人们认为这种拥挤对内在无序蛋白质的影响更大,内在无序蛋白质的链是伸展的,而对紧密的球状蛋白质影响较小。大分子拥挤的经典理论预测,增加的排阻体积效应将导致无序蛋白质发生压缩,并且来自模拟和实验的大量数据都支持这一观点。我们使用核磁共振、圆二色性和荧光光谱来表征α-突触核蛋白的结构和纤维化,α-突触核蛋白是一种与帕金森病有关的内在无序蛋白质,我们使用聚蔗糖70、其单体蔗糖和牛血清白蛋白作为拥挤剂。令人惊讶的是,高浓度大分子引起的体积排阻可能不是α-突触核蛋白压缩的主要原因。我们的结果表明,要理解拥挤条件下的蛋白质构象,必须考虑拥挤的各个方面。