Suppr超能文献

微小RNA-98通过靶向骨形态发生蛋白2调控人骨髓间充质干细胞的成骨分化。

MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2.

作者信息

Zhang Guo-Ping, Zhang Jing, Zhu Chao-Hua, Lin Lei, Wang Jian, Zhang Hai-Jing, Li Jun, Yu Xiao-Guang, Zhao Zhen-Shuan, Dong Wei, Liu Guo-Bin

机构信息

Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, China.

Medical Physics Department of Basic Medical College of Hebei Medical University, Shijiazhuang, China.

出版信息

J Cell Mol Med. 2017 Feb;21(2):254-264. doi: 10.1111/jcmm.12961. Epub 2016 Nov 18.

Abstract

To study the effects of microRNA-98 (miR-98) on human bone mesenchymal stromal cells (hBMSCs). The patients undergoing hip arthroplasty were selected by inclusion/exclusion criteria for this study. The extracted hBMSCs were detected of osteogenic differentiation by alizarin red S staining, and of cell phenotype by flow cytometry. Bioinformatics, dual luciferase report, western blotting, RT-PCR and immunoblotting were used in our study. The hBMSCs were divided into miR-98 mimics, miR-98 negative control (NC), miR-98 inhibitors, Mock and miR-98 inhibitors + siBMP2 groups. Human bone mesenchymal stromal cells were extracted and purified in vitro and had specific cytological morphology, surface markers and abilities of self-renewal and differentiation. Compared with the NC group and Mock group, the miR-98 mimics group showed increased miR-98 level while the miR-98 inhibitors group decreased miR-98 level (both P < 0.01). Dual luciferase reporter showed BMP2 was the target gene of miR-98. The levels of mRNA and protein expression of BMP2, protein expression of RUNX2, alkaline phosphatase activity and osteocalcin content significantly decreased in the miR-98 mimics group while increased in the miR-98 inhibitors group and showed no changes in the NC group and Mock group (all P < 0.05). The miR-98 mimics group showed obviously declined stained red particles and the miR-98 inhibitors group showed opposite result. After lowering the expression of miR-98, osteogenic differentiation ability of hBMSCs rose, which was weakened by the transfection with siBMP2. miR-98 may regulate osteogenic differentiation of hBMSCs by targeting BMP2.

摘要

研究微小RNA-98(miR-98)对人骨髓间充质干细胞(hBMSCs)的影响。根据纳入/排除标准选取行髋关节置换术的患者进行本研究。采用茜素红S染色检测提取的hBMSCs的成骨分化情况,采用流式细胞术检测细胞表型。本研究运用了生物信息学、双荧光素酶报告基因检测、蛋白质印迹法、逆转录-聚合酶链反应(RT-PCR)和免疫印迹法。将hBMSCs分为miR-98模拟物组、miR-98阴性对照组(NC)、miR-98抑制剂组、Mock组和miR-98抑制剂+siBMP2组。人骨髓间充质干细胞在体外提取并纯化,具有特定的细胞形态、表面标志物以及自我更新和分化能力。与NC组和Mock组相比,miR-98模拟物组miR-98水平升高,而miR-98抑制剂组miR-98水平降低(均P<0.01)。双荧光素酶报告基因检测显示骨形态发生蛋白2(BMP2)是miR-98的靶基因。miR-98模拟物组中BMP2的mRNA和蛋白表达水平、RUNX2蛋白表达、碱性磷酸酶活性及骨钙素含量显著降低,而miR-98抑制剂组则升高,NC组和Mock组无变化(均P<0.05)。miR-98模拟物组茜素红染色红色颗粒明显减少,miR-98抑制剂组结果相反。降低miR-98表达后,hBMSCs的成骨分化能力增强,而转染siBMP2则削弱了这种能力。miR-98可能通过靶向BMP2调控hBMSCs的成骨分化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09cd/5264139/d3e9c2976a87/JCMM-21-254-g001.jpg

相似文献

1
MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2.
J Cell Mol Med. 2017 Feb;21(2):254-264. doi: 10.1111/jcmm.12961. Epub 2016 Nov 18.
3
MicroRNA-223 Suppresses Osteoblast Differentiation by Inhibiting DHRS3.
Cell Physiol Biochem. 2018;47(2):667-679. doi: 10.1159/000490021. Epub 2018 May 22.
4
MiR-125b Regulates the Osteogenic Differentiation of Human Mesenchymal Stem Cells by Targeting BMPR1b.
Cell Physiol Biochem. 2017;41(2):530-542. doi: 10.1159/000457013. Epub 2017 Jan 31.
7
A novel miR-466l-3p/FGF23 axis promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.
Bone. 2024 Aug;185:117123. doi: 10.1016/j.bone.2024.117123. Epub 2024 May 11.
9
[Effect of micro RNA-335-5p regulating bone morphogenetic protein 2 on osteogenic differentiation of human bone marrow mesenchymal stem cells].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2020 Jun 15;34(6):781-786. doi: 10.7507/1002-1892.201910097.
10
MicroRNA-145 suppresses osteogenic differentiation of human jaw bone marrow mesenchymal stem cells partially via targeting semaphorin 3A.
Connect Tissue Res. 2020 Nov;61(6):577-585. doi: 10.1080/03008207.2019.1643334. Epub 2019 Jul 26.

引用本文的文献

4
MicroRNA-loaded biomaterials for osteogenesis.
Front Bioeng Biotechnol. 2022 Sep 19;10:952670. doi: 10.3389/fbioe.2022.952670. eCollection 2022.
5
The Emerging Role of Non-Coding RNAs in Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells.
Front Cell Dev Biol. 2022 May 16;10:903278. doi: 10.3389/fcell.2022.903278. eCollection 2022.
6
The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies.
Theranostics. 2021 Apr 30;11(13):6573-6591. doi: 10.7150/thno.55664. eCollection 2021.
7
MicroRNAs Modulate Signaling Pathways in Osteogenic Differentiation of Mesenchymal Stem Cells.
Int J Mol Sci. 2021 Feb 27;22(5):2362. doi: 10.3390/ijms22052362.
8
The role of microRNAs in bone development.
Bone. 2021 Feb;143:115760. doi: 10.1016/j.bone.2020.115760. Epub 2020 Nov 19.

本文引用的文献

1
Nox4 and Duox1/2 Mediate Redox Activation of Mesenchymal Cell Migration by PDGF.
PLoS One. 2016 Apr 25;11(4):e0154157. doi: 10.1371/journal.pone.0154157. eCollection 2016.
2
Thrombospondin-1 promotes mesenchymal stromal cell functions via TGFβ and in cooperation with PDGF.
Matrix Biol. 2016 Sep;55:106-116. doi: 10.1016/j.matbio.2016.03.003. Epub 2016 Mar 16.
3
Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting Colloidal Nanostructures at Room Temperature.
ACS Nano. 2016 Apr 26;10(4):4806-15. doi: 10.1021/acsnano.6b01729. Epub 2016 Mar 16.
4
Osteogenic differentiation of immature osteoblasts: Interplay of cell culture media and supplements.
Biotech Histochem. 2016;91(3):161-9. doi: 10.3109/10520295.2015.1110254. Epub 2016 Jan 21.
5
Comparison of hIGF-1 gene transfection to the hBMSCs and human meniscal fibrochondrocytes.
Med Sci Monit. 2015 Mar 4;21:681-8. doi: 10.12659/MSM.891410.
6
MicroRNAs involved in bone formation.
Cell Mol Life Sci. 2014 Dec;71(24):4747-61. doi: 10.1007/s00018-014-1700-6. Epub 2014 Aug 10.
7
Bone Morphogenetic Proteins: structure, biological function and therapeutic applications.
Arch Biochem Biophys. 2014 Nov 1;561:64-73. doi: 10.1016/j.abb.2014.07.011. Epub 2014 Jul 17.
8
Chondrogenesis of mesenchymal stem cells in an osteochondral environment is mediated by the subchondral bone.
Tissue Eng Part A. 2014 Jan;20(1-2):23-33. doi: 10.1089/ten.TEA.2013.0080. Epub 2013 Oct 2.
9
Growth factors in the treatment of early osteoarthritis.
Clin Cases Miner Bone Metab. 2013 Jan;10(1):26-9. doi: 10.11138/ccmbm/2013.10.1.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验