Gaspar Diana P, Serra Carmen, Lino Paulo R, Gonçalves Lídia, Taboada Pablo, Remuñán-López Carmen, Almeida António J
Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Nanobiofar Group, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.
Centre for Scientific and Technological Support to Research, University of Vigo, Vigo, Spain.
Int J Pharm. 2017 Jan 10;516(1-2):231-246. doi: 10.1016/j.ijpharm.2016.11.037. Epub 2016 Nov 15.
Associating protein with nanoparticles is an interesting strategy to improve their bioavailability and biological activity. Solid lipid nanoparticles (SLN) have been sought as carriers for therapeutic proteins transport to the lung epithelium. Nevertheless, because of their low inertia, nanoparticles intended for pulmonary application usually escape from lung deposition. To overcome this problem, the production of spray-dried powders containing nanoparticles has been recently reported. Herein we developed new hybrid microencapsulated SLN for pulmonary administration, containing a model protein (papain, PAP). PAP was adsorbed onto glyceryl dibehenate and glyceryl tristearate SLN. Physical characterization using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) confirmed the interaction between PAP and SLN corroborating that the protein was efficiently adsorbed at SLN's surface. PAP adsorption onto SLN (PAP-SLN) slightly increased particle size, while decreasing the SLN negative surface charge. The adsorption process followed a Freundlich type of adsorption isotherm. Nanoformulations were then spray-dried, originating spherical microparticles with suitable aerodynamic characteristics. Full characterization of microparticles was performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and isothermal titration calorimetry (ITC). PAP was released from dry powders in a higher extent when compared with non spray-dried SLN. Nevertheless, protein stability was kept throughout microsphere production, as assessed by SDS-PAGE.
将蛋白质与纳米颗粒相结合是一种提高其生物利用度和生物活性的有趣策略。固体脂质纳米颗粒(SLN)已被视作将治疗性蛋白质转运至肺上皮细胞的载体。然而,由于其惯性较低,用于肺部应用的纳米颗粒通常会从肺部沉积中逃逸。为克服这一问题,最近有报道称制备了含有纳米颗粒的喷雾干燥粉末。在此,我们开发了用于肺部给药的新型混合微囊化SLN,其包含一种模型蛋白(木瓜蛋白酶,PAP)。PAP吸附在二山嵛酸甘油酯和三硬脂酸甘油酯SLN上。使用透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)和差示扫描量热法(DSC)进行的物理表征证实了PAP与SLN之间的相互作用,证实该蛋白质有效地吸附在SLN表面。PAP吸附到SLN(PAP-SLN)上会使粒径略有增加,同时降低SLN的负表面电荷。吸附过程遵循弗伦德里希型吸附等温线。然后将纳米制剂进行喷雾干燥,得到具有合适空气动力学特性的球形微粒。使用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和等温滴定量热法(ITC)对微粒进行了全面表征。与未喷雾干燥的SLN相比,PAP从干粉中的释放程度更高。然而,通过SDS-PAGE评估,在整个微球制备过程中蛋白质稳定性得以保持。