Suppr超能文献

利用微生物苗圃生产高质量生物土壤结皮生物质用于退化旱地土壤修复

Microbial Nursery Production of High-Quality Biological Soil Crust Biomass for Restoration of Degraded Dryland Soils.

作者信息

Velasco Ayuso Sergio, Giraldo Silva Ana, Nelson Corey, Barger Nichole N, Garcia-Pichel Ferran

机构信息

School of Life Sciences, Arizona State University, Tempe, Arizona, USA.

Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA.

出版信息

Appl Environ Microbiol. 2017 Jan 17;83(3). doi: 10.1128/AEM.02179-16. Print 2017 Feb 1.

Abstract

Biological soil crusts (biocrusts) are slow-growing, phototroph-based microbial assemblages that develop on the topsoils of drylands. Biocrusts help maintain soil fertility and reduce erosion. Because their loss through human activities has negative ecological and environmental health consequences, biocrust restoration is of interest. Active soil inoculation with biocrust microorganisms can be an important tool in this endeavor. We present a culture-independent, two-step process to grow multispecies biocrusts in open greenhouse nursery facilities, based on the inoculation of local soils with local biocrust remnants and incubation under seminatural conditions that maintain the essence of the habitat but lessen its harshness. In each of four U.S. Southwest sites, we tested and deployed combinations of factors that maximized growth (gauged as chlorophyll a content) while minimizing microbial community shifts (assessed by 16S rRNA sequencing and bioinformatics), particularly for crust-forming cyanobacteria. Generally, doubling the frequency of natural wetting events, a 60% reduction in sunlight, and inoculation by slurry were optimal. Nutrient addition effects were site specific. In 4 months, our approach yielded crusts of high inoculum quality reared on local soil exposed to locally matched climates, acclimated to desiccation, and containing communities minimally shifted in composition from local ones. Our inoculum contained abundant crust-forming cyanobacteria and no significant numbers of allochthonous phototrophs, and it was sufficient to treat ca. 6,000 m of degraded dryland soils at 1 to 5% of the typical crust biomass concentration, having started from a natural crust remnant as small as 6 to 30 cm IMPORTANCE: Soil surface crusts can protect dryland soils from erosion, but they are often negatively impacted by human activities. Their degradation causes a loss of fertility, increased production of fugitive dust and intensity of dust storms with associated traffic problems, and provokes general public health hazards. Our results constitute an advance in the quest to actively restore biological soil covers by providing a means to obtain high-quality inoculum within a reasonable time (a few months), thereby allowing land managers to recover essential, but damaged, ecosystem services in a sustainable, self-perpetuating way as provided by biocrust communities.

摘要

生物土壤结皮(生物结皮)是生长缓慢、以光养生物为基础的微生物群落,在旱地的表土上发育形成。生物结皮有助于维持土壤肥力并减少侵蚀。由于人类活动导致其丧失会带来负面的生态和环境健康后果,因此生物结皮的恢复备受关注。用生物结皮微生物对土壤进行主动接种可能是实现这一目标的重要工具。我们提出了一种不依赖培养的两步法,可在开放式温室育苗设施中培育多物种生物结皮,该方法基于用当地生物结皮残余物接种当地土壤,并在半自然条件下进行培养,这种条件既能保持栖息地的本质特征,又能减轻其恶劣程度。在美国西南部的四个地点,我们测试并应用了多种因素的组合,这些因素能在使微生物群落变化(通过16S rRNA测序和生物信息学评估)最小化的同时,最大程度地促进生长(以叶绿素a含量衡量),尤其是对于形成结皮的蓝细菌。一般来说,将自然湿润事件的频率翻倍、将光照减少60%以及用泥浆接种是最佳的。添加养分的效果因地点而异。在4个月内,我们的方法培育出了接种质量高的结皮,这些结皮生长在当地土壤上,适应当地气候,适应干燥环境,其群落组成与当地群落相比变化最小。我们的接种物含有丰富的形成结皮的蓝细菌,没有大量外来光养生物,并且以典型结皮生物量浓度的1%至5%,从仅小至6到30厘米的天然结皮残余物开始,就足以处理约6000平方米退化的旱地土壤。重要性:土壤表层结皮可以保护旱地土壤免受侵蚀,但它们经常受到人类活动的负面影响。其退化会导致肥力丧失、扬尘增加、沙尘暴强度加大以及相关交通问题,还会引发一般公众健康危害。我们研究结果为通过在合理时间(几个月)内获得高质量接种物来积极恢复生物土壤覆盖层的探索取得了进展,从而使土地管理者能够以生物结皮群落提供的可持续、自我维持的方式恢复重要但已受损的生态系统服务。

相似文献

1
Microbial Nursery Production of High-Quality Biological Soil Crust Biomass for Restoration of Degraded Dryland Soils.
Appl Environ Microbiol. 2017 Jan 17;83(3). doi: 10.1128/AEM.02179-16. Print 2017 Feb 1.
2
Optimizing the Production of Nursery-Based Biological Soil Crusts for Restoration of Arid Land Soils.
Appl Environ Microbiol. 2019 Jul 18;85(15). doi: 10.1128/AEM.00735-19. Print 2019 Aug 1.
3
A Fog-Irrigated Soil Substrate System Unifies and Optimizes Cyanobacterial Biocrust Inoculum Production.
Appl Environ Microbiol. 2020 Jun 17;86(13). doi: 10.1128/AEM.00624-20.
4
Beneficial Cyanosphere Heterotrophs Accelerate Establishment of Cyanobacterial Biocrust.
Appl Environ Microbiol. 2021 Sep 28;87(20):e0123621. doi: 10.1128/AEM.01236-21. Epub 2021 Aug 11.
7
Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material.
FEMS Microbiol Ecol. 2013 Oct;86(1):101-13. doi: 10.1111/1574-6941.12143. Epub 2013 May 20.
8
Adaptation to Environmental Extremes Structures Functional Traits in Biological Soil Crust and Hypolithic Microbial Communities.
mSystems. 2022 Aug 30;7(4):e0141921. doi: 10.1128/msystems.01419-21. Epub 2022 Jul 19.
10
Towards large scale biocrust restoration: Producing an efficient and low-cost inoculum of N-fixing cyanobacteria.
Sci Total Environ. 2022 Nov 20;848:157704. doi: 10.1016/j.scitotenv.2022.157704. Epub 2022 Jul 29.

引用本文的文献

2
Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions.
Biol Rev Camb Philos Soc. 2025 Feb;100(1):1-18. doi: 10.1111/brv.13124. Epub 2024 Jul 29.
3
Nitrogen-fixing bacterial communities differ between perennial agroecosystem crops.
FEMS Microbiol Ecol. 2024 May 14;100(6). doi: 10.1093/femsec/fiae064.
4
Cultivating Resilience in Dryland Soils: An Assisted Migration Approach to Biological Soil Crust Restoration.
Microorganisms. 2023 Oct 15;11(10):2570. doi: 10.3390/microorganisms11102570.
6
Landscape characteristics shape surface soil microbiomes in the Chihuahuan Desert.
Front Microbiol. 2023 Jun 7;14:1135800. doi: 10.3389/fmicb.2023.1135800. eCollection 2023.
7
In Living Color: Pigment-Based Microbial Ecology At the Mineral-Air Interface.
Bioscience. 2022 Oct 22;72(12):1156-1175. doi: 10.1093/biosci/biac091. eCollection 2022 Dec.
8
Beneficial Cyanosphere Heterotrophs Accelerate Establishment of Cyanobacterial Biocrust.
Appl Environ Microbiol. 2021 Sep 28;87(20):e0123621. doi: 10.1128/AEM.01236-21. Epub 2021 Aug 11.
10
A Fog-Irrigated Soil Substrate System Unifies and Optimizes Cyanobacterial Biocrust Inoculum Production.
Appl Environ Microbiol. 2020 Jun 17;86(13). doi: 10.1128/AEM.00624-20.

本文引用的文献

2
Climate change and physical disturbance cause similar community shifts in biological soil crusts.
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12116-21. doi: 10.1073/pnas.1509150112. Epub 2015 Sep 14.
3
Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust.
Front Microbiol. 2015 Apr 14;6:277. doi: 10.3389/fmicb.2015.00277. eCollection 2015.
4
GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters.
Nucleic Acids Res. 2015 Jul 1;43(W1):W7-14. doi: 10.1093/nar/gkv318. Epub 2015 Apr 16.
5
Cyanobacterial Diversity in Biological Soil Crusts along a Precipitation Gradient, Northwest Negev Desert, Israel.
Microb Ecol. 2015 Jul;70(1):219-30. doi: 10.1007/s00248-014-0533-z. Epub 2014 Nov 20.
6
Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts.
PLoS One. 2014 Mar 13;9(3):e90049. doi: 10.1371/journal.pone.0090049. eCollection 2014.
7
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
Bioinformatics. 2014 May 1;30(9):1312-3. doi: 10.1093/bioinformatics/btu033. Epub 2014 Jan 21.
9
Light structures phototroph, bacterial and fungal communities at the soil surface.
PLoS One. 2013 Jul 19;8(7):e69048. doi: 10.1371/journal.pone.0069048. Print 2013.
10
Temperature drives the continental-scale distribution of key microbes in topsoil communities.
Science. 2013 Jun 28;340(6140):1574-7. doi: 10.1126/science.1236404.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验