Pelot Kyle A, Mitchell Rod, Kwon Moonhyuk, Hagelthorn Lynne M, Wardman Jacob F, Chiang Angela, Bohlmann Jörg, Ro Dae-Kyun, Zerbe Philipp
Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N1N4, Canada.
Plant J. 2017 Mar;89(5):885-897. doi: 10.1111/tpj.13427. Epub 2017 Feb 6.
Salvia divinorum commonly known as diviner's sage, is an ethnomedicinal plant of the mint family (Lamiaceae). Salvia divinorum is rich in clerodane-type diterpenoids, which accumulate predominantly in leaf glandular trichomes. The main bioactive metabolite, salvinorin A, is the first non-nitrogenous natural compound known to function as an opioid-receptor agonist, and is undergoing clinical trials for potential use in treating neuropsychiatric diseases and drug addictions. We report here the discovery and functional characterization of two S. divinorum diterpene synthases (diTPSs), the ent-copalyl diphosphate (ent-CPP) synthase SdCPS1, and the clerodienyl diphosphate (CLPP) synthase SdCPS2. Mining of leaf- and trichome-specific transcriptomes revealed five diTPSs, two of which are class II diTPSs (SdCPS1-2) and three are class I enzymes (SdKSL1-3). Of the class II diTPSs, transient expression in Nicotiana benthamiana identified SdCPS1 as an ent-CPP synthase, which is prevalent in roots and, together with SdKSL1, exhibits a possible dual role in general and specialized metabolism. In vivo co-expression and in vitro assays combined with nuclear magnetic resonance (NMR) analysis identified SdCPS2 as a CLPP synthase. A role of SdCPS2 in catalyzing the committed step in salvinorin A biosynthesis is supported by its biochemical function, trichome-specific expression and absence of additional class II diTPSs in S. divinorum. Structure-guided mutagenesis revealed four catalytic residues that enabled the re-programming of SdCPS2 activity to afford four distinct products, thus advancing our understanding of how neo-functionalization events have shaped the array of different class II diTPS functions in plants, and may promote synthetic biology platforms for a broader spectrum of diterpenoid bioproducts.
鼠尾草(Salvia divinorum)通常被称为预言家鼠尾草,是唇形科(Lamiaceae)的一种民族药用植物。鼠尾草富含克罗烷型二萜类化合物,主要积累在叶腺毛中。主要生物活性代谢产物丹参酮A是已知的第一种作为阿片受体激动剂发挥作用的非含氮天然化合物,目前正在进行临床试验,以探索其在治疗神经精神疾病和药物成瘾方面的潜在用途。我们在此报告了两种鼠尾草二萜合酶(diTPSs)的发现和功能表征,即内根-贝壳杉烯二磷酸(ent-CPP)合酶SdCPS1和克罗烷二烯二磷酸(CLPP)合酶SdCPS2。对叶和腺毛特异性转录组的挖掘揭示了五种diTPSs,其中两种是II类diTPSs(SdCPS1-2),三种是I类酶(SdKSL1-3)。在II类diTPSs中,在本氏烟草中的瞬时表达确定SdCPS1为一种ent-CPP合酶,其在根中普遍存在,并且与SdKSL1一起,在一般代谢和特殊代谢中可能发挥双重作用。体内共表达和体外试验结合核磁共振(NMR)分析确定SdCPS2为一种CLPP合酶。SdCPS2在催化丹参酮A生物合成中的关键步骤中的作用得到了其生化功能、腺毛特异性表达以及鼠尾草中不存在其他II类diTPSs的支持。结构导向诱变揭示了四个催化残基,这些残基能够对SdCPS2的活性进行重新编程,以产生四种不同的产物,从而加深了我们对新功能化事件如何塑造植物中不同II类diTPS功能阵列的理解,并可能促进用于更广泛二萜类生物产品的合成生物学平台的发展。