Suppr超能文献

生物燃料作物柳枝稷中二萜合酶的功能多样性。

Functional Diversity of Diterpene Synthases in the Biofuel Crop Switchgrass.

机构信息

Department of Plant Biology, University of California, Davis, California 95616.

Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, 200433 Shanghai, China.

出版信息

Plant Physiol. 2018 Sep;178(1):54-71. doi: 10.1104/pp.18.00590. Epub 2018 Jul 15.

Abstract

Diterpenoids constitute a diverse class of metabolites with critical functions in plant development, defense, and ecological adaptation. Major monocot crops, such as maize () and rice (), deploy diverse blends of specialized diterpenoids as core components of biotic and abiotic stress resilience. Here, we describe the genome-wide identification and functional characterization of stress-related diterpene synthases (diTPSs) in the dedicated bioenergy crop switchgrass (). Mining of the allotetraploid switchgrass genome identified an expansive diTPS family of 31 members, and biochemical analysis of 11 diTPSs revealed a modular metabolic network producing a diverse array of diterpenoid metabolites. In addition to -copalyl diphosphate (CPP) and -kaurene synthases predictably involved in gibberellin biosynthesis, we identified -CPP and -labda-13-en-8-ol diphosphate (LPP) synthases as well as two diTPSs forming (+)-labda-8,13-dienyl diphosphate (8,13-CPP) and cis-trans-clerodienyl diphosphate (CT-CLPP) scaffolds not observed previously in plants. Structure-guided mutagenesis of the (+)-8,13-CPP and CT-CLPP synthases revealed residue substitutions in the active sites that altered product outcome, representing potential neofunctionalization events that occurred during diversification of the switchgrass diTPS family. The conversion of -CPP, -LPP, -CPP, and -CT-CLPP by promiscuous diTPSs further yielded distinct labdane-type diterpene olefins and alcohols. Of these metabolites, the formation of 9β-hydroxy--pimar-15-ene and the expression of the corresponding genes were induced in roots and leaves in response to oxidative stress and ultraviolet irradiation, indicating their possible roles in abiotic stress adaptation. Together, these findings expand the known chemical space of diterpenoid metabolism in monocot crops toward systematically investigating and ultimately improving stress resilience traits in crop species.

摘要

二萜类化合物构成了一个多样化的代谢物类别,在植物发育、防御和生态适应中具有关键功能。主要的单子叶作物,如玉米()和水稻(),利用多样化的特化二萜混合物作为生物和非生物胁迫恢复力的核心成分。在这里,我们描述了在专用生物能源作物柳枝稷()中与应激相关的二萜合酶(diTPS)的全基因组鉴定和功能表征。对四倍体柳枝稷基因组的挖掘确定了一个扩展的 diTPS 家族,共有 31 个成员,对 11 个 diTPS 的生化分析揭示了一个模块化的代谢网络,产生了多种多样的二萜类代谢物。除了 - 牻牛儿基二磷酸(CPP)和 - 贝壳杉烯合酶可预测地参与赤霉素生物合成外,我们还鉴定出 -CPP 和 - 贝壳杉-13-烯-8-醇二磷酸(LPP)合酶以及形成(+)- 贝壳杉-8,13-二烯基二磷酸(8,13-CPP)和顺式-反式- 克劳迪烯基二磷酸(CT-CLPP)支架的两个 diTPS,这些支架在植物中以前没有观察到。(+)-8,13-CPP 和 CT-CLPP 合酶的结构引导诱变揭示了活性位点中的残基取代,改变了产物结果,代表在柳枝稷 diTPS 家族多样化过程中发生的潜在新功能化事件。混杂的 diTPS 将 -CPP、-LPP、-CPP 和 -CT-CLPP 转化为不同的贝壳杉烷型二萜烯烃和醇。在这些代谢物中,9β-羟基-- 对映体-15-烯的形成和相应基因的表达在根和叶中受到氧化应激和紫外线照射的诱导,表明它们在非生物胁迫适应中可能发挥作用。总之,这些发现扩展了单子叶作物中二萜类代谢物的已知化学空间,朝着系统地研究和最终改善作物物种的胁迫恢复力性状的方向迈进。

相似文献

引用本文的文献

本文引用的文献

1
Changing Face: A Key Residue for the Addition of Water by Sclareol Synthase.变脸:香紫苏合酶加水的关键残基
ACS Catal. 2018 Apr 6;8(4):3133-3137. doi: 10.1021/acscatal.8b00121. Epub 2018 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验