Zahodne Laura B, Gilsanz Paola, Glymour M Maria, Gibbons Laura E, Brewster Paul, Hamilton Jamie, Mez Jesse, Marden Jessica R, Nho Kwangsik, Larson Eric B, Crane Paul K, Gross Alden L
Department of Psychology, University of Michigan, Ann Arbor, MI.
Department of Psychology, University of Michigan, Ann Arbor, MI.
Am J Geriatr Psychiatry. 2017 Feb;25(2):120-128. doi: 10.1016/j.jagp.2016.10.009. Epub 2016 Oct 24.
Numerous studies show that depressive symptoms measured at a single assessment predict greater future stroke risk. Longer-term symptom patterns, such as variability across repeated measures or worst symptom level, might better reflect adverse aspects of depression than a single measurement. This prospective study compared five approaches to operationalizing depressive symptoms at annual assessments as predictors of stroke incidence.
Cohort followed for incident stroke over an average of 6.4 years.
The Adult Changes in Thought cohort follows initially cognitively intact, community- dwelling older adults from a population base defined by membership in Group Health, a Seattle-based nonprofit healthcare organization.
3,524 individuals aged 65 years and older.
We identified 665 incident strokes using ICD codes. We considered both baseline Center for Epidemiologic Studies-Depression scale (CES-D) score and, using a moving window of three most recent annual CES-D measurements, we compared most recent, maximum, average, and intra-individual variability of CES-D scores as predictors of subsequent stroke using Cox proportional hazards models.
Greater maximum (hazard ratio [HR]: 1.18; 95% CI: 1.07-1.30), average (HR: 1.20; 95% CI: 1.05-1.36) and intra-individual variability (HR: 1.15; 95% CI: 1.06-1.24) in CES-D were each associated with elevated stroke risk, independent of sociodemographics, cardiovascular risks, cognition, and daily functioning. Neither baseline nor most recent CES-D was associated with stroke. In a combined model, intra-individual variability in CES-D predicted stroke, but average CES-D did not.
Capturing the dynamic nature of depression is relevant in assessing stroke risk. Fluctuating depressive symptoms may reflect a prodrome of reduced cerebrovascular integrity.
大量研究表明,单次评估测得的抑郁症状预示着未来中风风险更高。长期症状模式,如重复测量的变异性或最严重症状水平,可能比单次测量更能反映抑郁症的不良方面。这项前瞻性研究比较了在年度评估中将抑郁症状作为中风发病率预测指标的五种方法。
对队列进行平均6.4年的随访,以观察中风发病情况。
“成人思维变化”队列追踪最初认知功能完好、居住在社区的老年人,这些老年人来自西雅图非营利性医疗保健组织“健康集团”成员所界定的人群。
3524名65岁及以上的个体。
我们使用国际疾病分类代码识别出665例中风病例。我们既考虑了基线流行病学研究中心抑郁量表(CES-D)评分,又使用最近三次年度CES-D测量的移动窗口,通过Cox比例风险模型比较了CES-D评分的最近值、最大值、平均值和个体内变异性,作为后续中风的预测指标。
CES-D的更大最大值(风险比[HR]:1.18;95%置信区间:1.07 - 1.30)、平均值(HR:1.20;95%置信区间:1.05 - 1.36)和个体内变异性(HR:1.15;95%置信区间:1.06 - 1.24)均与中风风险升高相关,且独立于社会人口统计学特征、心血管风险、认知和日常功能。基线和最近的CES-D均与中风无关。在一个综合模型中,CES-D的个体内变异性可预测中风,但平均CES-D则不能。
在评估中风风险时,把握抑郁症的动态性质具有重要意义。抑郁症状的波动可能反映脑血管完整性降低的前驱症状。