Suppr超能文献

潜伏性结核感染与活动性结核病鉴别诊断的生物标志物。

Biomarkers for discrimination between latent tuberculosis infection and active tuberculosis disease.

机构信息

Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea.

Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea.

出版信息

J Infect. 2017 Mar;74(3):281-293. doi: 10.1016/j.jinf.2016.11.010. Epub 2016 Nov 19.

Abstract

OBJECTIVE

We aimed to determine whether combinations of multiplex cytokine responses could differentiate Mycobacterium tuberculosis (Mtb) infection states.

METHODS

Mtb-specific antigen-induced and unstimulated cytokines were measured by Luminex assay in supernatants of QuantiFERON Gold In-Tube assay (QFT) in 48 active pulmonary TB patients (TB), 15 latent TB infection subjects (LTBI), and 13 healthy controls (HCs).

RESULTS

Among the 29 cytokines, eight Mtb antigen-specific biomarkers (GM-CSF, IFN-γ, IL-1RA, IL-2, IL-3, IL-13, IP-10, and MIP-1β) in the Mtb-infected group were significantly different from those of the HCs. Five Mtb-specific biomarkers (EGF, GM-CSF, IL-5, IL-10, and VEGF), two unstimulated biomarkers (TNF-α and VEGF), and one Mtb-specific biomarker ratio (IL-2/IFN-γ) showed significant differences between active TB and LTBI. Three unstimulated biomarkers (IL-8, IL-13, and VEGF) and 5 Mtb-specific biomarkers (IFN-γ, IL-2, IL-3, IP-10, and VEGF) were significantly different between active TB and non-active TB groups. Combinations of three cytokine biomarkers resulted in the accurate prediction of 92.1-93.7% of Mtb-infected cases and 92.3-100% of HCs, respectively. Moreover, combinations of five biomarkers accurately predicted 90.9-100% of active TB cases and 80-100% of LTBI subjects, respectively. In discriminating between active TB and non-active TB regardless of QFT results, combinations of six biomarkers predicted 79.2-95.8% of active TB cases and 67.9-89.3% of non-active TB subjects.

CONCLUSIONS

Taken together, our data suggest that combinations of whole blood Mtb antigen-dependent cytokines could serve as biomarkers to determine TB disease states. Especially, VEGF is highlighted as a key biomarker for reflecting active TB, irrespective of stimulation.

摘要

目的

我们旨在确定多重细胞因子反应的组合是否可以区分结核分枝杆菌(Mtb)感染状态。

方法

通过 Luminex 分析测定 48 例活动性肺结核患者(TB)、15 例潜伏性结核感染患者(LTBI)和 13 例健康对照者(HCs)的 QuantiFERON Gold In-Tube 检测(QFT)中 Mtb 特异性抗原诱导和未刺激细胞因子的上清液。

结果

在 29 种细胞因子中,感染组中 8 种 Mtb 抗原特异性生物标志物(GM-CSF、IFN-γ、IL-1RA、IL-2、IL-3、IL-13、IP-10 和 MIP-1β)与 HCs 有显著差异。5 种 Mtb 特异性生物标志物(EGF、GM-CSF、IL-5、IL-10 和 VEGF)、2 种未刺激生物标志物(TNF-α和 VEGF)和 1 种 Mtb 特异性生物标志物比值(IL-2/IFN-γ)在活动性 TB 和 LTBI 之间有显著差异。3 种未刺激生物标志物(IL-8、IL-13 和 VEGF)和 5 种 Mtb 特异性生物标志物(IFN-γ、IL-2、IL-3、IP-10 和 VEGF)在活动性 TB 和非活动性 TB 组之间有显著差异。三种细胞因子生物标志物的组合可以准确预测 92.1-93.7%的 Mtb 感染病例和 92.3-100%的 HCs。此外,五种生物标志物的组合可以准确预测 90.9-100%的活动性 TB 病例和 80-100%的 LTBI 患者。在不考虑 QFT 结果的情况下,区分活动性 TB 和非活动性 TB 时,六种生物标志物的组合预测 79.2-95.8%的活动性 TB 病例和 67.9-89.3%的非活动性 TB 病例。

结论

总的来说,我们的数据表明全血 Mtb 抗原依赖性细胞因子的组合可以作为确定 TB 疾病状态的生物标志物。特别是 VEGF 作为反映活动性 TB 的关键生物标志物被突出强调,而与刺激无关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验