Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea.
Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea.
J Infect. 2017 Mar;74(3):281-293. doi: 10.1016/j.jinf.2016.11.010. Epub 2016 Nov 19.
We aimed to determine whether combinations of multiplex cytokine responses could differentiate Mycobacterium tuberculosis (Mtb) infection states.
Mtb-specific antigen-induced and unstimulated cytokines were measured by Luminex assay in supernatants of QuantiFERON Gold In-Tube assay (QFT) in 48 active pulmonary TB patients (TB), 15 latent TB infection subjects (LTBI), and 13 healthy controls (HCs).
Among the 29 cytokines, eight Mtb antigen-specific biomarkers (GM-CSF, IFN-γ, IL-1RA, IL-2, IL-3, IL-13, IP-10, and MIP-1β) in the Mtb-infected group were significantly different from those of the HCs. Five Mtb-specific biomarkers (EGF, GM-CSF, IL-5, IL-10, and VEGF), two unstimulated biomarkers (TNF-α and VEGF), and one Mtb-specific biomarker ratio (IL-2/IFN-γ) showed significant differences between active TB and LTBI. Three unstimulated biomarkers (IL-8, IL-13, and VEGF) and 5 Mtb-specific biomarkers (IFN-γ, IL-2, IL-3, IP-10, and VEGF) were significantly different between active TB and non-active TB groups. Combinations of three cytokine biomarkers resulted in the accurate prediction of 92.1-93.7% of Mtb-infected cases and 92.3-100% of HCs, respectively. Moreover, combinations of five biomarkers accurately predicted 90.9-100% of active TB cases and 80-100% of LTBI subjects, respectively. In discriminating between active TB and non-active TB regardless of QFT results, combinations of six biomarkers predicted 79.2-95.8% of active TB cases and 67.9-89.3% of non-active TB subjects.
Taken together, our data suggest that combinations of whole blood Mtb antigen-dependent cytokines could serve as biomarkers to determine TB disease states. Especially, VEGF is highlighted as a key biomarker for reflecting active TB, irrespective of stimulation.
我们旨在确定多重细胞因子反应的组合是否可以区分结核分枝杆菌(Mtb)感染状态。
通过 Luminex 分析测定 48 例活动性肺结核患者(TB)、15 例潜伏性结核感染患者(LTBI)和 13 例健康对照者(HCs)的 QuantiFERON Gold In-Tube 检测(QFT)中 Mtb 特异性抗原诱导和未刺激细胞因子的上清液。
在 29 种细胞因子中,感染组中 8 种 Mtb 抗原特异性生物标志物(GM-CSF、IFN-γ、IL-1RA、IL-2、IL-3、IL-13、IP-10 和 MIP-1β)与 HCs 有显著差异。5 种 Mtb 特异性生物标志物(EGF、GM-CSF、IL-5、IL-10 和 VEGF)、2 种未刺激生物标志物(TNF-α和 VEGF)和 1 种 Mtb 特异性生物标志物比值(IL-2/IFN-γ)在活动性 TB 和 LTBI 之间有显著差异。3 种未刺激生物标志物(IL-8、IL-13 和 VEGF)和 5 种 Mtb 特异性生物标志物(IFN-γ、IL-2、IL-3、IP-10 和 VEGF)在活动性 TB 和非活动性 TB 组之间有显著差异。三种细胞因子生物标志物的组合可以准确预测 92.1-93.7%的 Mtb 感染病例和 92.3-100%的 HCs。此外,五种生物标志物的组合可以准确预测 90.9-100%的活动性 TB 病例和 80-100%的 LTBI 患者。在不考虑 QFT 结果的情况下,区分活动性 TB 和非活动性 TB 时,六种生物标志物的组合预测 79.2-95.8%的活动性 TB 病例和 67.9-89.3%的非活动性 TB 病例。
总的来说,我们的数据表明全血 Mtb 抗原依赖性细胞因子的组合可以作为确定 TB 疾病状态的生物标志物。特别是 VEGF 作为反映活动性 TB 的关键生物标志物被突出强调,而与刺激无关。