Johnson W Ben, Vatterott Pierce J, Peterson Michael A, Bagwe Suveer, Underwood R Dent, Bank Alan J, Gage Ryan M, Ramza Brian, Foreman Blair W, Splett Vincent, Haddad Tarek, Gillberg Jeffrey M, Ghosh Subham
Iowa Heart Center PC, Des Moines, Iowa.
United Heart and Vascular Clinic, St. Paul, Minnesota.
Heart Rhythm. 2017 Mar;14(3):385-391. doi: 10.1016/j.hrthm.2016.11.017. Epub 2016 Nov 18.
Electrical heterogeneity (EH) during cardiac resynchronization therapy may vary with different left ventricular (LV) pacing sites.
The purpose of this study was to evaluate the relationship between such changes and acute hemodynamic response (AHR).
Two EH metrics-standard deviation of activation times and mean left thorax activation times-were computed from isochronal maps based on 53-electrode body surface mapping during baseline AAI pacing and biventricular (BiV) pacing from different pacing sites in coronary veins in 40 cardiac resynchronization therapy-indicated patients. AHR at different sites was evaluated by invasive measurement of LV-dp/dt at baseline and BiV pacing, along with right ventricular (RV)-LV sensing delays and QRS duration.
The site with the greatest combined reduction in standard deviation of activation times and left thorax activation times from baseline to BiV pacing was hemodynamically optimal (defined by AHR equal to, or within 5% of, the largest dp/dt response) in 35 of 40 patients (88%). Sites with the longest RV-LV and narrowest paced QRS were hemodynamically optimal in 26 of 40 patients (65%) and 28 of 40 patients (70%), respectively. EH metrics from isochronal maps had much better accuracy (sensitivity 90%, specificity 80%) for identifying hemodynamically responsive sites (∆LV dp/dt ≥10%) compared with RV-LV delay (69%, 85%) or paced QRS reduction (52%, 76%). Multivariate prediction model based on EH metrics showed significant correlation (R = 0.53, P <.001) between predicted and measured AHR.
Changes in EH from baseline to BiV pacing more accurately identified hemodynamically optimal sites than RV-LV delays or paced QRS shortening. Optimization of LV lead location by minimizing EH during BiV pacing, based on body surface mapping, may improve CRT response.
心脏再同步治疗期间的电非均质性(EH)可能因不同的左心室(LV)起搏部位而异。
本研究旨在评估此类变化与急性血流动力学反应(AHR)之间的关系。
在40例有心脏再同步治疗指征的患者中,基于53电极体表标测,在基线AAI起搏以及来自冠状静脉不同起搏部位的双心室(BiV)起搏期间,从等时图计算两个EH指标——激动时间标准差和左胸平均激动时间。通过在基线和BiV起搏时有创测量LV - dp/dt、右心室(RV)-LV感知延迟以及QRS时限,评估不同部位的AHR。
从基线到BiV起搏,激动时间标准差和左胸激动时间综合降低幅度最大的部位,在40例患者中有35例(88%)血流动力学最佳(定义为AHR等于最大dp/dt反应或在其5%以内)。RV - LV最长且起搏QRS最窄的部位,分别在40例患者中有26例(65%)和28例(70%)血流动力学最佳。与RV - LV延迟(敏感性69%,特异性85%)或起搏QRS缩窄(敏感性52%,特异性76%)相比,等时图的EH指标在识别血流动力学反应部位(∆LV dp/dt≥10%)方面具有更高的准确性(敏感性90%,特异性80%)。基于EH指标的多变量预测模型显示,预测的AHR与实测的AHR之间存在显著相关性(R = 0.53,P <.001)。
从基线到BiV起搏时EH的变化比RV - LV延迟或起搏QRS缩短更能准确识别血流动力学最佳部位。基于体表标测,通过在BiV起搏期间使EH最小化来优化LV导线位置,可能会改善心脏再同步治疗反应。