Matsuo Yuzy, Maurer Sebastian P, Yukawa Masashi, Zakian Silva, Singleton Martin R, Surrey Thomas, Toda Takashi
Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
Cell Regulation Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
J Cell Sci. 2016 Dec 15;129(24):4592-4606. doi: 10.1242/jcs.197533. Epub 2016 Nov 21.
Dynamic microtubule plus-ends interact with various intracellular target regions such as the cell cortex and the kinetochore. Two conserved families of microtubule plus-end-tracking proteins, the XMAP215, ch-TOG or CKAP5 family and the end-binding 1 (EB1, also known as MAPRE1) family, play pivotal roles in regulating microtubule dynamics. Here, we study the functional interplay between fission yeast Dis1, a member of the XMAP215/TOG family, and Mal3, an EB1 protein. Using an in vitro microscopy assay, we find that purified Dis1 autonomously tracks growing microtubule ends and is a bona fide microtubule polymerase. Mal3 recruits additional Dis1 to microtubule ends, explaining the synergistic enhancement of microtubule dynamicity by these proteins. A non-canonical binding motif in Dis1 mediates the interaction with Mal3. X-ray crystallography shows that this new motif interacts in an unconventional configuration with the conserved hydrophobic cavity formed within the Mal3 C-terminal region that typically interacts with the canonical SXIP motif. Selectively perturbing the Mal3-Dis1 interaction in living cells demonstrates that it is important for accurate chromosome segregation. Whereas, in some metazoans, the interaction between EB1 and the XMAP215/TOG family members requires an additional binding partner, fission yeast relies on a direct interaction, indicating evolutionary plasticity of this critical interaction module.
动态微管正端与各种细胞内靶区域相互作用,如细胞皮层和动粒。微管正端追踪蛋白有两个保守家族,即XMAP215、ch-TOG或CKAP5家族以及末端结合蛋白1(EB1,也称为MAPRE1)家族,它们在调节微管动力学中起关键作用。在此,我们研究了裂殖酵母Dis1(XMAP215/TOG家族成员)与EB1蛋白Mal3之间的功能相互作用。通过体外显微镜检测,我们发现纯化的Dis1能自主追踪生长中的微管末端,并且是一种真正的微管聚合酶。Mal3将额外的Dis1招募到微管末端,这解释了这些蛋白对微管动态性的协同增强作用。Dis1中的一个非经典结合基序介导了与Mal3的相互作用。X射线晶体学表明,这个新基序以一种非常规构型与Mal3 C末端区域内形成的保守疏水腔相互作用,该疏水腔通常与经典的SXIP基序相互作用。在活细胞中选择性干扰Mal3-Dis1相互作用表明,这对准确的染色体分离很重要。然而,在一些后生动物中,EB1与XMAP215/TOG家族成员之间的相互作用需要一个额外的结合伴侣,而裂殖酵母则依赖直接相互作用,这表明这个关键相互作用模块具有进化可塑性。