Suppr超能文献

微管动态不稳定性的机制起源及其受EB蛋白的调控

Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.

作者信息

Zhang Rui, Alushin Gregory M, Brown Alan, Nogales Eva

机构信息

Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Cell. 2015 Aug 13;162(4):849-59. doi: 10.1016/j.cell.2015.07.012. Epub 2015 Jul 30.

Abstract

Microtubule (MT) dynamic instability is driven by GTP hydrolysis and regulated by microtubule-associated proteins, including the plus-end tracking end-binding protein (EB) family. We report six cryo-electron microscopy (cryo-EM) structures of MTs, at 3.5 Å or better resolution, bound to GMPCPP, GTPγS, or GDP, either decorated with kinesin motor domain after polymerization or copolymerized with EB3. Subtle changes around the E-site nucleotide during hydrolysis trigger conformational changes in α-tubulin around an "anchor point," leading to global lattice rearrangements and strain generation. Unlike the extended lattice of the GMPCPP-MT, the EB3-bound GTPγS-MT has a compacted lattice that differs in lattice twist from that of the also compacted GDP-MT. These results and the observation that EB3 promotes rapid hydrolysis of GMPCPP suggest that EB proteins modulate structural transitions at growing MT ends by recognizing and promoting an intermediate state generated during GTP hydrolysis. Our findings explain both EBs end-tracking behavior and their effect on microtubule dynamics.

摘要

微管(MT)的动态不稳定性由GTP水解驱动,并受微管相关蛋白调控,包括正端追踪末端结合蛋白(EB)家族。我们报告了六种MT的冷冻电子显微镜(cryo-EM)结构,分辨率达到3.5埃或更高,这些结构与GMPCPP、GTPγS或GDP结合,聚合后用驱动蛋白运动结构域修饰或与EB3共聚。水解过程中E位点核苷酸周围的细微变化会触发α-微管蛋白围绕“锚定点”的构象变化,导致整体晶格重排和应变产生。与GMPCPP-MT的延伸晶格不同,EB3结合的GTPγS-MT具有紧凑的晶格,其晶格扭曲与同样紧凑的GDP-MT不同。这些结果以及EB3促进GMPCPP快速水解的观察结果表明,EB蛋白通过识别和促进GTP水解过程中产生的中间状态来调节生长中的MT末端的结构转变。我们的发现解释了EBs的末端追踪行为及其对微管动力学的影响。

相似文献

2
Separating the effects of nucleotide and EB binding on microtubule structure.分离核苷酸和 EB 结合对微管结构的影响。
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6191-E6200. doi: 10.1073/pnas.1802637115. Epub 2018 Jun 18.

引用本文的文献

2
4
Modulating the Curvature of Protein Self-Assembled Spiral Nanotubules.调控蛋白质自组装螺旋纳米管的曲率
ACS Appl Mater Interfaces. 2025 May 21;17(20):29146-29157. doi: 10.1021/acsami.5c01405. Epub 2025 May 12.
9
Structural switching of tubulin in the microtubule lattice.微管晶格中微管蛋白的结构转换。
Biochem Soc Trans. 2025 Feb 5;53(1):BST20240360. doi: 10.1042/BST20240360.

本文引用的文献

3
Structure of the yeast mitochondrial large ribosomal subunit.酵母线粒体大亚基的结构。
Science. 2014 Mar 28;343(6178):1485-1489. doi: 10.1126/science.1249410.
6
High-resolution comparative modeling with RosettaCM.使用 RosettaCM 进行高分辨率比较建模。
Structure. 2013 Oct 8;21(10):1735-42. doi: 10.1016/j.str.2013.08.005. Epub 2013 Sep 12.
8
Molecular mechanism of action of microtubule-stabilizing anticancer agents.微管稳定剂类抗癌药物的作用机制。
Science. 2013 Feb 1;339(6119):587-90. doi: 10.1126/science.1230582. Epub 2013 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验