Setiaputra Dheva T, Cheng Derrick Th, Lu Shan, Hansen Jesse M, Dalwadi Udit, Lam Cindy Hy, To Jeffrey L, Dong Meng-Qiu, Yip Calvin K
Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
National Institute of Biological Sciences, Beijing, Beijing, China.
EMBO Rep. 2017 Feb;18(2):280-291. doi: 10.15252/embr.201642548. Epub 2016 Nov 21.
Elongator is a ~850 kDa protein complex involved in multiple processes from transcription to tRNA modification. Conserved from yeast to humans, Elongator is assembled from two copies of six unique subunits (Elp1 to Elp6). Despite the wealth of structural data on the individual subunits, the overall architecture and subunit organization of the full Elongator and the molecular mechanisms of how it exerts its multiple activities remain unclear. Using single-particle electron microscopy (EM), we revealed that yeast Elongator adopts a bilobal architecture and an unexpected asymmetric subunit arrangement resulting from the hexameric Elp456 subassembly anchored to one of the two Elp123 lobes that form the structural scaffold. By integrating the EM data with available subunit crystal structures and restraints generated from cross-linking coupled to mass spectrometry, we constructed a multiscale molecular model that showed the two Elp3, the main catalytic subunit, are located in two distinct environments. This work provides the first structural insights into Elongator and a framework to understand the molecular basis of its multifunctionality.
延伸因子是一种约850 kDa的蛋白质复合物,参与从转录到tRNA修饰的多个过程。延伸因子从酵母到人类都保守存在,由六个独特亚基(Elp1至Elp6)的两个拷贝组装而成。尽管关于各个亚基有丰富的结构数据,但完整延伸因子的整体结构和亚基组织以及它如何发挥多种活性的分子机制仍不清楚。利用单颗粒电子显微镜(EM),我们揭示酵母延伸因子采用双叶结构以及由六聚体Elp456亚组件锚定到形成结构支架的两个Elp123叶之一上所导致的意外不对称亚基排列。通过将EM数据与可用的亚基晶体结构以及由交联耦合质谱产生的限制相结合,我们构建了一个多尺度分子模型,该模型显示主要催化亚基两个Elp3位于两个不同的环境中。这项工作提供了对延伸因子的首次结构见解以及理解其多功能性分子基础的框架。