Suppr超能文献

中国中山登革热的风险评估:时间序列回归树分析

Risk assessment of dengue fever in Zhongshan, China: a time-series regression tree analysis.

作者信息

Liu K-K, Wang T, Huang X-D, Wang G-L, Xia Y, Zhang Y-T, Jing Q-L, Huang J-W, Liu X-X, Lu J-H, Hu W-B

机构信息

School of Public Health,Key Laboratory of Tropical Disease Control of Ministry of Education,Sun Yat-Sen University,Guangzhou,PR China.

Zhongshan Research Institute of Public Health,School of Public Health,Sun Yat-Sen University,Zhonghsan,PR China.

出版信息

Epidemiol Infect. 2017 Feb;145(3):451-461. doi: 10.1017/S095026881600265X. Epub 2016 Nov 22.

Abstract

Dengue fever (DF) is the most prevalent and rapidly spreading mosquito-borne disease globally. Control of DF is limited by barriers to vector control and integrated management approaches. This study aimed to explore the potential risk factors for autochthonous DF transmission and to estimate the threshold effects of high-order interactions among risk factors. A time-series regression tree model was applied to estimate the hierarchical relationship between reported autochthonous DF cases and the potential risk factors including the timeliness of DF surveillance systems (median time interval between symptom onset date and diagnosis date, MTIOD), mosquito density, imported cases and meteorological factors in Zhongshan, China from 2001 to 2013. We found that MTIOD was the most influential factor in autochthonous DF transmission. Monthly autochthonous DF incidence rate increased by 36·02-fold [relative risk (RR) 36·02, 95% confidence interval (CI) 25·26-46·78, compared to the average DF incidence rate during the study period] when the 2-month lagged moving average of MTIOD was >4·15 days and the 3-month lagged moving average of the mean Breteau Index (BI) was ⩾16·57. If the 2-month lagged moving average MTIOD was between 1·11 and 4·15 days and the monthly maximum diurnal temperature range at a lag of 1 month was <9·6 °C, the monthly mean autochthonous DF incidence rate increased by 14·67-fold (RR 14·67, 95% CI 8·84-20·51, compared to the average DF incidence rate during the study period). This study demonstrates that the timeliness of DF surveillance systems, mosquito density and diurnal temperature range play critical roles in the autochthonous DF transmission in Zhongshan. Better assessment and prediction of the risk of DF transmission is beneficial for establishing scientific strategies for DF early warning surveillance and control.

摘要

登革热(DF)是全球最普遍且传播迅速的蚊媒疾病。登革热的防控受到病媒控制和综合管理方法方面障碍的限制。本研究旨在探究本地登革热传播的潜在风险因素,并估计风险因素之间高阶相互作用的阈值效应。应用时间序列回归树模型来估计2001年至2013年中国中山报告的本地登革热病例与潜在风险因素之间的层次关系,这些潜在风险因素包括登革热监测系统的及时性(症状出现日期与诊断日期之间的中位时间间隔,MTIOD)、蚊虫密度、输入病例和气象因素。我们发现MTIOD是本地登革热传播中最具影响力的因素。当MTIOD的2个月滞后移动平均值>4.15天且平均布雷图指数(BI)的3个月滞后移动平均值⩾16.57时,每月本地登革热发病率增加36.02倍[相对风险(RR)36.02,95%置信区间(CI)25.26 - 46.78,与研究期间的平均登革热发病率相比]。如果MTIOD的2个月滞后移动平均值在1.11至4.15天之间且滞后1个月的月最高日温差<9.6℃,则每月本地登革热平均发病率增加14.67倍(RR 14.67,95% CI 8.84 - 20.51,与研究期间的平均登革热发病率相比)。本研究表明,登革热监测系统的及时性、蚊虫密度和日温差在中山本地登革热传播中起关键作用。更好地评估和预测登革热传播风险有利于制定登革热早期预警监测与控制的科学策略。

相似文献

1
Risk assessment of dengue fever in Zhongshan, China: a time-series regression tree analysis.
Epidemiol Infect. 2017 Feb;145(3):451-461. doi: 10.1017/S095026881600265X. Epub 2016 Nov 22.
2
Imported dengue cases, weather variation and autochthonous dengue incidence in Cairns, Australia.
PLoS One. 2013 Dec 13;8(12):e81887. doi: 10.1371/journal.pone.0081887. eCollection 2013.
3
A threshold analysis of dengue transmission in terms of weather variables and imported dengue cases in Australia.
Emerg Microbes Infect. 2013 Dec;2(12):e87. doi: 10.1038/emi.2013.85. Epub 2013 Dec 18.
5
Using Baidu Search Index to Predict Dengue Outbreak in China.
Sci Rep. 2016 Dec 1;6:38040. doi: 10.1038/srep38040.
7
Developing a Time Series Predictive Model for Dengue in Zhongshan, China Based on Weather and Guangzhou Dengue Surveillance Data.
PLoS Negl Trop Dis. 2016 Feb 19;10(2):e0004473. doi: 10.1371/journal.pntd.0004473. eCollection 2016 Feb.
8
Meteorological Factors for Dengue Fever Control and Prevention in South China.
Int J Environ Res Public Health. 2016 Aug 31;13(9):867. doi: 10.3390/ijerph13090867.
9
Developing a dengue prediction model based on climate in Tawau, Malaysia.
Acta Trop. 2019 Sep;197:105055. doi: 10.1016/j.actatropica.2019.105055. Epub 2019 Jun 8.
10
Data informed analysis of 2014 dengue fever outbreak in Guangzhou: Impact of multiple environmental factors and vector control.
J Theor Biol. 2017 Mar 7;416:161-179. doi: 10.1016/j.jtbi.2016.12.014. Epub 2016 Dec 27.

引用本文的文献

1
A systematic review of published literature on mosquito control action thresholds across the world.
PLoS Negl Trop Dis. 2023 Mar 3;17(3):e0011173. doi: 10.1371/journal.pntd.0011173. eCollection 2023 Mar.
2
Model-based risk assessment of dengue fever transmission in Xiamen City, China.
Front Public Health. 2023 Feb 13;11:1079877. doi: 10.3389/fpubh.2023.1079877. eCollection 2023.
3
Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review.
Front Public Health. 2022 Jun 3;10:900077. doi: 10.3389/fpubh.2022.900077. eCollection 2022.
4
Epidemiology of Indigenous Dengue Cases in Zhejiang Province, Southeast China.
Front Public Health. 2022 Apr 14;10:857911. doi: 10.3389/fpubh.2022.857911. eCollection 2022.
6
Interaction of climate and socio-ecological environment drives the dengue outbreak in epidemic region of China.
PLoS Negl Trop Dis. 2021 Oct 4;15(10):e0009761. doi: 10.1371/journal.pntd.0009761. eCollection 2021 Oct.
7
From importation to autochthonous transmission: Drivers of chikungunya and dengue emergence in a temperate area.
PLoS Negl Trop Dis. 2020 May 11;14(5):e0008320. doi: 10.1371/journal.pntd.0008320. eCollection 2020 May.

本文引用的文献

2
Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia.
Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):13069-74. doi: 10.1073/pnas.1501375112. Epub 2015 Oct 5.
3
NS1: A corner piece in the dengue pathogenesis puzzle?
Sci Transl Med. 2015 Sep 9;7(304):304fs37. doi: 10.1126/scitranslmed.aad1255.
5
Dengue.
Lancet. 2015 Jan 31;385(9966):453-65. doi: 10.1016/S0140-6736(14)60572-9. Epub 2014 Sep 14.
6
Temporal relationship between environmental factors and the occurrence of dengue fever.
Int J Environ Health Res. 2014;24(5):471-81. doi: 10.1080/09603123.2013.865713. Epub 2014 Jan 3.
7
Imported dengue cases, weather variation and autochthonous dengue incidence in Cairns, Australia.
PLoS One. 2013 Dec 13;8(12):e81887. doi: 10.1371/journal.pone.0081887. eCollection 2013.
8
9
Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations.
Am J Trop Med Hyg. 2013 Apr;88(4):689-97. doi: 10.4269/ajtmh.12-0488. Epub 2013 Feb 25.
10
House-to-house human movement drives dengue virus transmission.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):994-9. doi: 10.1073/pnas.1213349110. Epub 2012 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验