Luo Yingting, Zhu Yunmin, Luo Dandan, Zhou Jie, Song Enbin, Wang Donghua
Department of Mathematics, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
Sensors (Basel). 2008 Dec 8;8(12):8086-8103. doi: 10.3390/s8128086.
This paper proposes a new distributed Kalman filtering fusion with random state transition and measurement matrices, i.e., random parameter matrices Kalman filtering. It is proved that under a mild condition the fused state estimate is equivalent to the centralized Kalman filtering using all sensor measurements; therefore, it achieves the best performance. More importantly, this result can be applied to Kalman filtering with uncertain observations including the measurement with a false alarm probability as a special case, as well as, randomly variant dynamic systems with multiple models. Numerical examples are given which support our analysis and show significant performance loss of ignoring the randomness of the parameter matrices.
本文提出了一种具有随机状态转移矩阵和量测矩阵的新型分布式卡尔曼滤波融合方法,即随机参数矩阵卡尔曼滤波。证明了在温和条件下,融合状态估计等效于使用所有传感器量测值的集中式卡尔曼滤波;因此,它具有最佳性能。更重要的是,该结果可应用于具有不确定观测值的卡尔曼滤波,包括以误报概率作为特殊情况的量测,以及具有多个模型的随机时变动态系统。给出了数值例子,支持我们的分析,并表明忽略参数矩阵的随机性会导致显著的性能损失。