Suppr超能文献

全局最优多传感器分布式随机参数矩阵卡尔曼滤波融合及其应用

Globally Optimal Multisensor Distributed Random Parameter Matrices Kalman Filtering Fusion with Applications.

作者信息

Luo Yingting, Zhu Yunmin, Luo Dandan, Zhou Jie, Song Enbin, Wang Donghua

机构信息

Department of Mathematics, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.

出版信息

Sensors (Basel). 2008 Dec 8;8(12):8086-8103. doi: 10.3390/s8128086.

Abstract

This paper proposes a new distributed Kalman filtering fusion with random state transition and measurement matrices, i.e., random parameter matrices Kalman filtering. It is proved that under a mild condition the fused state estimate is equivalent to the centralized Kalman filtering using all sensor measurements; therefore, it achieves the best performance. More importantly, this result can be applied to Kalman filtering with uncertain observations including the measurement with a false alarm probability as a special case, as well as, randomly variant dynamic systems with multiple models. Numerical examples are given which support our analysis and show significant performance loss of ignoring the randomness of the parameter matrices.

摘要

本文提出了一种具有随机状态转移矩阵和量测矩阵的新型分布式卡尔曼滤波融合方法,即随机参数矩阵卡尔曼滤波。证明了在温和条件下,融合状态估计等效于使用所有传感器量测值的集中式卡尔曼滤波;因此,它具有最佳性能。更重要的是,该结果可应用于具有不确定观测值的卡尔曼滤波,包括以误报概率作为特殊情况的量测,以及具有多个模型的随机时变动态系统。给出了数值例子,支持我们的分析,并表明忽略参数矩阵的随机性会导致显著的性能损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b6/3791008/af522ecd7147/sensors-08-08086f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验