Suppr超能文献

预测氨酰-tRNA合成酶突变的致病性。

Predicting the pathogenicity of aminoacyl-tRNA synthetase mutations.

作者信息

Oprescu Stephanie N, Griffin Laurie B, Beg Asim A, Antonellis Anthony

机构信息

Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States.

Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States; Medical Scientist Training Program, and University of Michigan Medical School, Ann Arbor, MI, United States.

出版信息

Methods. 2017 Jan 15;113:139-151. doi: 10.1016/j.ymeth.2016.11.013. Epub 2016 Nov 20.

Abstract

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for charging tRNA with cognate amino acids-the first step in protein synthesis. ARSs are required for protein translation in the cytoplasm and mitochondria of all cells. Surprisingly, mutations in 28 of the 37 nuclear-encoded human ARS genes have been linked to a variety of recessive and dominant tissue-specific disorders. Current data indicate that impaired enzyme function is a robust predictor of the pathogenicity of ARS mutations. However, experimental model systems that distinguish between pathogenic and non-pathogenic ARS variants are required for implicating newly identified ARS mutations in disease. Here, we outline strategies to assist in predicting the pathogenicity of ARS variants and urge cautious evaluation of genetic and functional data prior to linking an ARS mutation to a human disease phenotype.

摘要

氨酰-tRNA合成酶(ARSs)在所有细胞中普遍表达,是负责将tRNA与相应氨基酸结合的必需酶,这是蛋白质合成的第一步。ARSs是所有细胞的细胞质和线粒体中蛋白质翻译所必需的。令人惊讶的是,37个核编码的人类ARS基因中的28个发生的突变与多种隐性和显性组织特异性疾病有关。目前的数据表明,酶功能受损是ARS突变致病性的有力预测指标。然而,需要区分致病性和非致病性ARS变体的实验模型系统,以便将新发现的ARS突变与疾病联系起来。在这里,我们概述了有助于预测ARS变体致病性的策略,并敦促在将ARS突变与人类疾病表型联系起来之前,对遗传和功能数据进行谨慎评估。

相似文献

1
Predicting the pathogenicity of aminoacyl-tRNA synthetase mutations.
Methods. 2017 Jan 15;113:139-151. doi: 10.1016/j.ymeth.2016.11.013. Epub 2016 Nov 20.
2
The role of tRNA synthetases in neurological and neuromuscular disorders.
FEBS Lett. 2018 Mar;592(5):703-717. doi: 10.1002/1873-3468.12962. Epub 2018 Feb 1.
4
Four pedigrees with aminoacyl-tRNA synthetase abnormalities.
Neurol Sci. 2022 Apr;43(4):2765-2774. doi: 10.1007/s10072-021-05626-z. Epub 2021 Sep 28.
5
To charge or not to charge: mechanistic insights into neuropathy-associated tRNA synthetase mutations.
Curr Opin Genet Dev. 2013 Jun;23(3):302-9. doi: 10.1016/j.gde.2013.02.002. Epub 2013 Mar 4.
6
Mitochondrial aminoacyl-tRNA synthetases in human disease.
Mol Genet Metab. 2013 Apr;108(4):206-11. doi: 10.1016/j.ymgme.2013.01.010. Epub 2013 Jan 26.
7
The role of aminoacyl-tRNA synthetases in genetic diseases.
Annu Rev Genomics Hum Genet. 2008;9:87-107. doi: 10.1146/annurev.genom.9.081307.164204.
9
The Role of Nuclear-Encoded Mitochondrial tRNA Charging Enzymes in Human Inherited Disease.
Genes (Basel). 2022 Dec 9;13(12):2319. doi: 10.3390/genes13122319.
10
Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human disease.
Hum Mol Genet. 2017 Oct 1;26(R2):R114-R127. doi: 10.1093/hmg/ddx231.

引用本文的文献

1
Recessive, pathogenic AARS1 variants display variable loss-of-function and dominant-negative effects.
Dis Model Mech. 2025 Jun 1;18(6). doi: 10.1242/dmm.052006. Epub 2025 Jun 27.
2
Atypical Presentation of -Related Disorder: Expanding the Phenotype and Genotype.
JIMD Rep. 2025 May 12;66(3):e70020. doi: 10.1002/jmd2.70020. eCollection 2025 May.
6
A model organism pipeline provides insight into the clinical heterogeneity of TARS1 loss-of-function variants.
HGG Adv. 2024 Jul 18;5(3):100324. doi: 10.1016/j.xhgg.2024.100324. Epub 2024 Jul 2.
7
A previously unreported NARS1 variant causes dominant distal hereditary motor neuropathy in a French family.
J Peripher Nerv Syst. 2024 Jun;29(2):275-278. doi: 10.1111/jns.12635. Epub 2024 May 20.
9
Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy.
Neurobiol Dis. 2024 Jun 1;195:106501. doi: 10.1016/j.nbd.2024.106501. Epub 2024 Apr 6.
10

本文引用的文献

2
A novel multisystem disease associated with recessive mutations in the tyrosyl-tRNA synthetase (YARS) gene.
Am J Med Genet A. 2017 Jan;173(1):126-134. doi: 10.1002/ajmg.a.37973. Epub 2016 Sep 15.
3
Clinical findings in a patient with FARS2 mutations and early-infantile-encephalopathy with epilepsy.
Am J Med Genet A. 2016 Nov;170(11):3004-3007. doi: 10.1002/ajmg.a.37836. Epub 2016 Aug 23.
4
Neonatal encephalocardiomyopathy caused by mutations in VARS2.
Metab Brain Dis. 2017 Feb;32(1):267-270. doi: 10.1007/s11011-016-9890-2. Epub 2016 Aug 8.
6
Neddylation requires glycyl-tRNA synthetase to protect activated E2.
Nat Struct Mol Biol. 2016 Aug;23(8):730-7. doi: 10.1038/nsmb.3250. Epub 2016 Jun 27.
8
Nuclear Receptor NR1H3 in Familial Multiple Sclerosis.
Neuron. 2016 Jun 1;90(5):948-54. doi: 10.1016/j.neuron.2016.04.039.
9
Dimerization is required for GARS-mediated neurotoxicity in dominant CMT disease.
Hum Mol Genet. 2016 Apr 15;25(8):1528-42. doi: 10.1093/hmg/ddw031. Epub 2016 Feb 7.
10
Synaptic Deficits at Neuromuscular Junctions in Two Mouse Models of Charcot-Marie-Tooth Type 2d.
J Neurosci. 2016 Mar 16;36(11):3254-67. doi: 10.1523/JNEUROSCI.1762-15.2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验