Suppr超能文献

在 DI-CMTC 周围神经病的小鼠模型中,肌肉中 BDNF 的增加可挽救受损的轴突运输。

Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy.

机构信息

Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK.

出版信息

Neurobiol Dis. 2024 Jun 1;195:106501. doi: 10.1016/j.nbd.2024.106501. Epub 2024 Apr 6.

Abstract

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRS mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of Yars mice modelling DI-CMT. We determined that Yars homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRS, but not TyrRS, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.

摘要

腓骨肌萎缩症(CMT)是一种遗传性周围神经病,由许多功能不同的基因突变引起。氨酰-tRNA 合成酶(ARS)酶将氨基酸转移到伴侣 tRNA 以进行蛋白质合成,是与 CMT 病因学遗传相关的最大蛋白质家族,表明存在共同的病理机制。显性中间型 CMT 型 C(DI-CMTC)是由 YARS1 突变引起的,该突变导致编码的酪氨酸-tRNA 合成酶(TyrRS)产生毒性获得性功能,这是通过突变蛋白构象变化暴露共识新表位表面来介导的。在这项研究中,我们首先表明,人类 DI-CMTC 引起的 TyrRS 与脑源性神经营养因子受体 TrkB 的细胞外结构域错误相互作用,我们之前已经对几种与 CMT 2D 型(CMT2D)相关的突变甘氨酰-tRNA 合成酶进行了这种异常关联。然后,我们对模拟 DI-CMTC 的 Yars 小鼠进行了时间性神经肌肉评估。我们确定 Yars 纯合子表现出体内含有神经营养因子的信号内体轴突运输的选择性、年龄依赖性损伤,与 CMT2D 小鼠类似。通过将重组 TyrRS 而不是 TyrRS 注射到野生型小鼠的肌肉中,可复制这种损伤。在 DI-CMTC 肌肉中注射重组蛋白或肌肉特异性基因治疗可增强 BDNF,可导致完全纠正轴突运输。因此,这项工作确定了与 ARS 相关的神经病变中存在非细胞自主的病理机制,并强调了在肌肉中增加 BDNF 水平作为治疗策略的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验