Suppr超能文献

基于拉曼光谱的非标记免疫细胞状态预测

Non-label immune cell state prediction using Raman spectroscopy.

机构信息

Laboratory for Comprehensive Bioimaging, RIKEN QBiC, 6-2-3 Furuedai, Suita, Osaka, Japan.

Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.

出版信息

Sci Rep. 2016 Nov 23;6:37562. doi: 10.1038/srep37562.

Abstract

The acquired immune system, mainly composed of T and B lymphocytes, plays a key role in protecting the host from infection. It is important and technically challenging to identify cell types and their activation status in living and intact immune cells, without staining or killing the cells. Using Raman spectroscopy, we succeeded in discriminating between living T cells and B cells, and visualized the activation status of living T cells without labeling. Although the Raman spectra of T cells and B cells were similar, they could be distinguished by discriminant analysis of the principal components. Raman spectra of activated T cells with anti-CD3 and anti-CD28 antibodies largely differed compared to that of naïve T cells, enabling the prediction of T cell activation status at a single cell level. Our analysis revealed that the spectra of individual T cells gradually change from the pattern of naïve T cells to that of activated T cells during the first 24 h of activation, indicating that changes in Raman spectra reflect slow changes rather than rapid changes in cell state during activation. Our results indicate that the Raman spectrum enables the detection of dynamic changes in individual cell state scattered in a heterogeneous population.

摘要

获得性免疫系统主要由 T 细胞和 B 细胞组成,在保护宿主免受感染方面发挥着关键作用。在不染色或杀死细胞的情况下,识别活的完整免疫细胞中的细胞类型及其激活状态既重要又具有技术挑战性。我们使用拉曼光谱成功地区分了活的 T 细胞和 B 细胞,并在不标记的情况下可视化了活的 T 细胞的激活状态。尽管 T 细胞和 B 细胞的拉曼光谱相似,但可以通过主成分判别分析将它们区分开来。用抗 CD3 和抗 CD28 抗体激活的 T 细胞的拉曼光谱与幼稚 T 细胞的拉曼光谱有很大不同,这使得能够在单细胞水平上预测 T 细胞的激活状态。我们的分析表明,在激活的最初 24 小时内,单个 T 细胞的光谱逐渐从幼稚 T 细胞的模式转变为激活 T 细胞的模式,这表明拉曼光谱的变化反映了激活过程中细胞状态的缓慢变化,而不是快速变化。我们的结果表明,拉曼光谱能够检测到在异质群体中分散的单个细胞状态的动态变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4d3/5120326/56964c84d3e4/srep37562-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验