Suppr超能文献

相似文献

1
Design of super-elastic biodegradable scaffolds with longitudinally oriented microchannels and optimization of the channel size for Schwann cell migration.
Sci Technol Adv Mater. 2012 Nov 23;13(6):064207. doi: 10.1088/1468-6996/13/6/064207. eCollection 2012 Dec.
5
Substrate Fluidity Regulates Cell Adhesion and Morphology on Poly(ε-caprolactone)-Based Materials.
ACS Biomater Sci Eng. 2016 Mar 14;2(3):446-453. doi: 10.1021/acsbiomaterials.6b00058. Epub 2016 Feb 22.
7
Biodegradable elastomeric scaffolds for soft tissue engineering.
J Control Release. 2003 Feb 21;87(1-3):69-79. doi: 10.1016/s0168-3659(02)00351-6.
8
Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
Biomaterials. 2008 Dec;29(35):4630-6. doi: 10.1016/j.biomaterials.2008.08.031. Epub 2008 Sep 18.

引用本文的文献

1
Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future.
Mater Today Bio. 2025 Feb 5;31:101503. doi: 10.1016/j.mtbio.2025.101503. eCollection 2025 Apr.
4
Performance of a Biodegradable Composite with Hydroxyapatite as a Scaffold in Pulp Tissue Repair.
Polymers (Basel). 2020 Apr 17;12(4):937. doi: 10.3390/polym12040937.
5
Shape-memory surfaces for cell mechanobiology.
Sci Technol Adv Mater. 2015 Feb 18;16(1):014804. doi: 10.1088/1468-6996/16/1/014804. eCollection 2015 Feb.
6
The taming of the cell: shape-memory nanopatterns direct cell orientation.
Int J Nanomedicine. 2014 May 7;9 Suppl 1(Suppl 1):117-26. doi: 10.2147/IJN.S50677. eCollection 2014.
7
PHBV/PAM scaffolds with local oriented structure through UV polymerization for tissue engineering.
Biomed Res Int. 2014;2014:157987. doi: 10.1155/2014/157987. Epub 2014 Jan 22.

本文引用的文献

1
Shape-memory surface with dynamically tunable nano-geometry activated by body heat.
Adv Mater. 2012 Jan 10;24(2):273-8. doi: 10.1002/adma.201102181. Epub 2011 Sep 23.
3
Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration.
Tissue Eng Part C Methods. 2011 Jul;17(7):705-15. doi: 10.1089/ten.tec.2010.0565. Epub 2011 Apr 18.
4
Perspectives in regeneration and tissue engineering of peripheral nerves.
Ann Anat. 2011 Jul;193(4):334-40. doi: 10.1016/j.aanat.2011.03.001. Epub 2011 Mar 12.
5
Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration.
Prog Neurobiol. 2011 Feb;93(2):204-30. doi: 10.1016/j.pneurobio.2010.11.002. Epub 2010 Dec 2.
6
A helical flow, circular microreactor for separating and enriching "smart" polymer-antibody capture reagents.
Lab Chip. 2010 Nov 21;10(22):3130-8. doi: 10.1039/c004978f. Epub 2010 Sep 30.
7
A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration.
Tissue Eng Part A. 2009 Nov;15(11):3297-308. doi: 10.1089/ten.TEA.2009.0017.
8
Development of new nerve guide tube for repair of long nerve defects.
Tissue Eng Part C Methods. 2009 Sep;15(3):387-402. doi: 10.1089/ten.tec.2008.0508.
9
Gene expression by marrow stromal cells in a porous collagen-glycosaminoglycan scaffold is affected by pore size and mechanical stimulation.
J Mater Sci Mater Med. 2008 Nov;19(11):3455-63. doi: 10.1007/s10856-008-3506-2. Epub 2008 Jun 27.
10
The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps.
Biomaterials. 2008 Jul;29(21):3117-27. doi: 10.1016/j.biomaterials.2008.03.042. Epub 2008 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验