文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于周围神经损伤的潜在可商业化神经导向导管:过去、现在和未来。

Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future.

作者信息

Liu Chundi, Sun Mouyuan, Lin Lining, Luo Yaxian, Peng Lianjie, Zhang Jingyu, Qiu Tao, Liu Zhichao, Yin Jun, Yu Mengfei

机构信息

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.

The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.

出版信息

Mater Today Bio. 2025 Feb 5;31:101503. doi: 10.1016/j.mtbio.2025.101503. eCollection 2025 Apr.


DOI:10.1016/j.mtbio.2025.101503
PMID:40018056
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11867546/
Abstract

Peripheral nerve injuries are a prevalent global issue that has garnered great concern. Although autografts remain the preferred clinical approach to repair, their efficacy is hampered by factors like donor scarcity. The emergence of nerve guidance conduits as novel tissue engineering tools offers a promising alternative strategy. This review aims to interpret nerve guidance conduits and their commercialization from both clinical and laboratory perspectives. To enhance comprehension of clinical situations, this article provides a comprehensive analysis of the clinical efficacy of nerve conduits approved by the United States Food and Drug Administration. It proposes that the initial six months post-transplantation is a critical window period for evaluating their efficacy. Additionally, this study conducts a systematic discussion on the research progress of laboratory conduits, focusing on biomaterials and add-on strategies as pivotal factors for nerve regeneration, as supported by the literature analysis. The clinical conduit materials and prospective optimal materials are thoroughly discussed. The add-on strategies, together with their distinct obstacles and potentials are deeply analyzed. Based on the above evaluations, the development path and manufacturing strategy for the commercialization of nerve guidance conduits are envisioned. The critical conclusion promoting commercialization is summarized as follows: 1) The optimization of biomaterials is the fundamental means; 2) The phased application of additional strategies is the emphasized direction; 3) The additive manufacturing techniques are the necessary tools. As a result, the findings of this research provide academic and clinical practitioners with valuable insights that may facilitate future commercialization endeavors of nerve guidance conduits.

摘要

周围神经损伤是一个普遍存在的全球性问题,已引起广泛关注。尽管自体移植仍然是修复的首选临床方法,但其疗效受到供体稀缺等因素的阻碍。神经引导导管作为新型组织工程工具的出现提供了一种有前景的替代策略。本综述旨在从临床和实验室角度解读神经引导导管及其商业化。为了增强对临床情况的理解,本文对美国食品药品监督管理局批准的神经导管的临床疗效进行了全面分析。提出移植后的最初六个月是评估其疗效的关键窗口期。此外,本研究对实验室导管的研究进展进行了系统讨论,重点关注生物材料和附加策略作为神经再生的关键因素,文献分析提供了支持。对临床导管材料和潜在的最佳材料进行了深入讨论。对附加策略及其独特的障碍和潜力进行了深入分析。基于上述评估,设想了神经引导导管商业化的发展路径和制造策略。促进商业化的关键结论总结如下:1)生物材料的优化是根本手段;2)附加策略的分阶段应用是重点方向;3)增材制造技术是必要工具。因此,本研究结果为学术和临床从业者提供了有价值的见解,可能有助于神经引导导管未来的商业化努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/6977d29bd40a/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/bc31e70494eb/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/31c6a82ed7f4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/2d52eea57792/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/cb541a13f2db/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/9baa187376bc/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/3c0486a1052d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/06e25f6ff35a/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/7f923fc34576/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/977bbcb5818a/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/72d11057943b/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/8cd66405e770/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/6977d29bd40a/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/bc31e70494eb/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/31c6a82ed7f4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/2d52eea57792/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/cb541a13f2db/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/9baa187376bc/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/3c0486a1052d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/06e25f6ff35a/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/7f923fc34576/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/977bbcb5818a/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/72d11057943b/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/8cd66405e770/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72e/11867546/6977d29bd40a/gr11.jpg

相似文献

[1]
Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future.

Mater Today Bio. 2025-2-5

[2]
Advances in biomaterial-based tissue engineering for peripheral nerve injury repair.

Bioact Mater. 2024-12-13

[3]
Beyond the limiting gap length: peripheral nerve regeneration through implantable nerve guidance conduits.

Biomater Sci. 2024-3-12

[4]
Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits.

Acta Biomater. 2018-8-1

[5]
Dual-layer conduit containing VEGF-A - Transfected Schwann cells promotes peripheral nerve regeneration via angiogenesis.

Acta Biomater. 2024-5

[6]
Additive manufacturing of peripheral nerve conduits - Fabrication methods, design considerations and clinical challenges.

SLAS Technol. 2023-6

[7]
In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun.

Acta Biomater. 2018-6-7

[8]
Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration.

J Control Release. 2020-1-10

[9]
Advances in Large Gap Peripheral Nerve Injury Repair and Regeneration with Bridging Nerve Guidance Conduits.

Macromol Biosci. 2023-10

[10]
Comparison of Collagen and Human Amniotic Membrane Nerve Wraps and Conduits for Peripheral Nerve Repair in Preclinical Models: A Systematic Review of the Literature.

J Reconstr Microsurg. 2023-5

引用本文的文献

[1]
Multidimensional advances in neural interface technology for peripheral nerve repair: From material innovation to clinical translation.

Mater Today Bio. 2025-7-14

[2]
Advanced Bioactive Polymers and Materials for Nerve Repair: Strategies and Mechanistic Insights.

J Funct Biomater. 2025-7-9

[3]
Long-Gap Sciatic Nerve Regeneration Using 3D-Printed Nerve Conduits with Controlled FGF-2 Release.

ACS Appl Mater Interfaces. 2025-7-16

本文引用的文献

[1]
Unveiling the molecular blueprint of SKP-SCs-mediated tissue engineering-enhanced neuroregeneration.

J Nanobiotechnology. 2024-12-26

[2]
Rapid Forming, Robust Adhesive Fungal-Sourced Chitosan Hydrogels Loaded with Deferoxamine for Sutureless Short-Gap Peripheral Nerve Repair.

Adv Healthc Mater. 2024-12

[3]
Hybrid construction of tissue-engineered nerve graft using skin derived precursors induced neurons and Schwann cells to enhance peripheral neuroregeneration.

Mater Today Bio. 2024-8-9

[4]
Nerve Regeneration Potential of Antioxidant-Modified Black Phosphorus Quantum Dots in Peripheral Nerve Injury.

ACS Nano. 2024-8-27

[5]
Harnessing three-dimensional porous chitosan microsphere embedded with adipose-derived stem cells to promote nerve regeneration.

Stem Cell Res Ther. 2024-6-1

[6]
4D-Printed MXene-Based Artificial Nerve Guidance Conduit for Enhanced Regeneration of Peripheral Nerve Injuries.

Adv Healthc Mater. 2024-9

[7]
Sea Cucumber-Inspired Microneedle Nerve Guidance Conduit for Synergistically Inhibiting Muscle Atrophy and Promoting Nerve Regeneration.

ACS Nano. 2024-6-4

[8]
Stepwise degradable PGA-SF core-shell electrospinning scaffold with superior tenacity in wetting regime for promoting bone regeneration.

Mater Today Bio. 2024-3-12

[9]
Development of ovalbumin implants with different spatial configurations for treatment of peripheral nerve injury.

Bioact Mater. 2024-2-15

[10]
Silk fibroin-based inks for 3D printing using a double crosslinking process.

Bioact Mater. 2024-1-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索