Eindhoven University of Technology, Department of Applied Physics, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Nanoscale. 2016 Dec 1;8(47):19829-19845. doi: 10.1039/c6nr07483a.
Integrating metals and metal oxides with graphene is key in utilizing its extraordinary material properties that are ideal for nanoelectronic and catalyst applications. Atomic layer deposition (ALD) has become a key technique for depositing ultrathin, conformal metal(oxide) films. ALD of metal(oxide) films on graphene, however, remains a genuine challenge due to the chemical inertness of graphene. In this study we address this issue by combining first-principles density functional theory (DFT) simulations with ALD experiments. The focus is on the Pt ALD on graphene, as this hybrid system is very promising for solar and fuel cells, hydrogen technologies, microreactors, and sensors. Here we elucidate the surface reactions underpinning the nucleation stage of Pt ALD on pristine, defective and functionalized graphenes. The employed reaction mechanism clearly depends on (a) the available surface groups on graphene, and (b) the ligands accompanying the metal centre in the precursor. DFT calculations also indicate that graphene oxide (GO) can afford a stronger adsorption of MeCpPtMe, unlike Pt(acac), as compared to bare (non-functionalized) graphene, suggesting that GO monolayers are effective Pt ALD seed layers. Confirming the latter, we evince that wafer-scale, continuous Pt films can indeed be grown on GO monolayers using a thermal ALD process with MeCpPtMe and O gas. Besides, the current in-depth atomistic insights are of practical use for understanding similar ALD processes of other metals and metal oxides on graphene.
将金属和金属氧化物与石墨烯结合是利用其非凡的材料特性(非常适合纳米电子学和催化剂应用)的关键。原子层沉积(ALD)已成为沉积超薄、保形金属(氧化物)薄膜的关键技术。然而,由于石墨烯的化学惰性,金属(氧化物)薄膜在石墨烯上的 ALD 仍然是一个真正的挑战。在这项研究中,我们通过结合第一性原理密度泛函理论(DFT)模拟和 ALD 实验来解决这个问题。重点是 Pt 在石墨烯上的 ALD,因为这种混合系统在太阳能和燃料电池、氢气技术、微反应器和传感器中非常有前途。在这里,我们阐明了 Pt 在原始、有缺陷和功能化石墨烯上的 ALD 成核阶段的表面反应。所采用的反应机制显然取决于(a)石墨烯上可用的表面基团,以及(b)前体中伴随金属中心的配体。DFT 计算还表明,与裸(非功能化)石墨烯相比,氧化石墨烯(GO)可以为 MeCpPtMe 提供更强的吸附,而不是 Pt(acac),这表明 GO 单层是有效的 Pt ALD 种子层。证实了后者,我们表明,使用 MeCpPtMe 和 O 气体的热 ALD 工艺,确实可以在 GO 单层上生长晶圆级、连续的 Pt 薄膜。此外,目前深入的原子级见解对于理解石墨烯上其他金属和金属氧化物的类似 ALD 过程具有实际用途。