Grillo Fabio, Van Bui Hao, Moulijn Jacob A, Kreutzer Michiel T, van Ommen J Ruud
Department of Chemical Engineering, Delft University of Technology , 2629 HZ Delft, The Netherlands.
J Phys Chem Lett. 2017 Mar 2;8(5):975-983. doi: 10.1021/acs.jpclett.6b02978. Epub 2017 Feb 14.
We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment.
我们展示了对铂纳米颗粒(NP)原子层沉积(ALD)中尺寸分布随温度和循环次数演变的原子层面理解。对我们实验的原子模拟告诉我们,纳米颗粒的生长主要通过纳米颗粒扩散和聚结,而不是通过诸如前驱体化学吸附、原子附着和奥斯特瓦尔德熟化等单原子过程。特别是,我们的分析表明,纳米颗粒聚集发生在氧半反应期间,并且纳米颗粒迁移率呈现出尺寸和温度依赖性标度。最后,我们表明,与广泛报道的情况相反,一般来说,不能仅通过循环次数简单地控制纳米颗粒尺寸。相反,虽然在很宽的温度范围内可以精确控制铂的沉积量,但当生长以原子附着为主时,要实现类似ALD的纳米颗粒尺寸精度则需要低沉积温度(例如,T < 100 °C)。