Suppr超能文献

利用遥感技术估算实际蒸散量:在希腊色萨利平原的应用

Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece.

作者信息

Tsouni Alexia, Kontoes Charalabos, Koutsoyiannis Demetris, Elias Panagiotis, Mamassis Nikos

机构信息

Department of Water Resources, National Technical University of Athens, Heroon Polytechneiou 5, Zographou, 157 80, Athens, Greece.

Institute for Space Applications and Remote Sensing, National Observatory of Athens, I. Metaxa & Vas. Pavlou Str., Lofos Koufou, P. Penteli, 152 36, Athens, Greece.

出版信息

Sensors (Basel). 2008 Jun 1;8(6):3586-3600. doi: 10.3390/s8063586.

Abstract

Remote sensing can assist in improving the estimation of the geographical distribution of evapotranspiration, and consequently water demand in large cultivated areas for irrigation purposes and sustainable water resources management. In the direction of these objectives, the daily actual evapotranspiration was calculated in this study during the summer season of 2001 over the Thessaly plain in Greece, a wide irrigated area of great agricultural importance. Three different methods were adapted and applied: the remotesensing methods by Granger (2000) and Carlson and Buffum (1989) that use satellite data in conjunction with ground meteorological measurements and an adapted FAO (Food and Agriculture Organisation) Penman-Monteith method (Allen at al. 1998), which was selected to be the reference method. The satellite data were used in conjunction with ground data collected on the three closest meteorological stations. All three methods, exploit visible channels 1 and 2 and infrared channels 4 and 5 of NOAA-AVHRR (National Oceanic and Atmospheric Administration - Advanced Very High Resolution Radiometer) sensor images to calculate albedo and NDVI (Normalised Difference Vegetation Index), as well as surface temperatures. The FAO Penman-Monteith and the Granger method have used exclusively NOAA-15 satellite images to obtain mean surface temperatures. For the Carlson-Buffum method a combination of NOAA-14 and ΝΟΑΑ-15 satellite images was used, since the average rate of surface temperature rise during the morning was required. The resulting estimations show that both the Carlson-Buffum and Granger methods follow in general the variations of the reference FAO Penman-Monteith method. Both methods have potential for estimating the spatial distribution of evapotranspiration, whereby the degree of the relative agreement with the reference FAO Penman-Monteith method depends on the crop growth stage. In particular, the Carlson- Buffum method performed better during the first half of the crop development stage, while the Granger method performed better during the remaining of the development stage and the entire maturing stage. The parameter that influences the estimations significantly is the wind speed whose high values result in high underestimates of evapotranspiration. Thus, it should be studied further in future.

摘要

遥感有助于改进对蒸散地理分布的估算,从而有助于估算大面积耕地用于灌溉目的的需水量以及实现水资源的可持续管理。为实现这些目标,本研究在2001年夏季计算了希腊色萨利平原(一个具有重要农业意义的广阔灌溉区)的日实际蒸散量。采用并应用了三种不同的方法:格兰杰(2000年)以及卡尔森和布法姆(1989年)的遥感方法,这些方法将卫星数据与地面气象测量数据结合使用;还有一种经过调整的粮农组织(联合国粮食及农业组织)彭曼-蒙特斯方法(艾伦等人,1998年),该方法被选为参考方法。卫星数据与在三个距离最近的气象站收集的地面数据结合使用。所有这三种方法都利用了美国国家海洋和大气管理局高级甚高分辨率辐射计(NOAA - AVHRR)传感器图像的可见光通道1和2以及红外通道4和5来计算反照率和归一化植被指数(NDVI)以及地表温度。粮农组织彭曼-蒙特斯方法和格兰杰方法仅使用NOAA - 15卫星图像来获取平均地表温度。对于卡尔森-布法姆方法,使用了NOAA - 14和NOAA - 15卫星图像的组合,因为需要早晨地表温度的平均上升速率。所得估算结果表明,卡尔森-布法姆方法和格兰杰方法总体上都遵循参考粮农组织彭曼-蒙特斯方法的变化趋势。这两种方法都具有估算蒸散空间分布的潜力,不过它们与参考粮农组织彭曼-蒙特斯方法的相对一致程度取决于作物生长阶段。特别是,卡尔森-布法姆方法在作物发育阶段的前半期表现更好,而格兰杰方法在发育阶段的剩余时期以及整个成熟阶段表现更好。对估算结果有显著影响的参数是风速,风速较高会导致对蒸散量的严重低估。因此,未来应进一步对此进行研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1cb/3714655/ce6c551e275e/sensors-08-03586f1.jpg

相似文献

1
Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece.
Sensors (Basel). 2008 Jun 1;8(6):3586-3600. doi: 10.3390/s8063586.
3
Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.
Environ Monit Assess. 2015 Nov;187(11):699. doi: 10.1007/s10661-015-4920-9. Epub 2015 Oct 23.
4
[Estimation of evapotranspiration and crop coefficient in Dajiuhu peatland of Shennongjia based on FAO56 Penman-Monteith].
Ying Yong Sheng Tai Xue Bao. 2020 May;31(5):1699-1706. doi: 10.13287/j.1001-9332.202005.018.
8
[MODIS-driven estimation of regional evapotranspiration in Karst area of Southwest China based on the Penman-Monteith-Leuning algorithm.].
Ying Yong Sheng Tai Xue Bao. 2018 May;29(5):1617-1625. doi: 10.13287/j.1001-9332.201805.014.
9
Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators.
Front Plant Sci. 2024 Jul 8;15:1354913. doi: 10.3389/fpls.2024.1354913. eCollection 2024.
10
[Parameters modification and evaluation of two evapotranspiration models based on Penman-Monteith model for summer maize].
Ying Yong Sheng Tai Xue Bao. 2017 Jun 18;28(6):1917-1924. doi: 10.13287/j.1001-9332.201706.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验