Nagy Attila, Kiss Nikolett Éva, Buday-Bódi Erika, Magyar Tamás, Cavazza Francesco, Gentile Salvatore Luca, Abdullah Haidi, Tamás János, Fehér Zsolt Zoltán
Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary.
Consorzio di Bonifica Canale Emiliano Romagnolo, Via E. Masi 8, 40137 Bologna, Italy.
Plants (Basel). 2024 Apr 27;13(9):1212. doi: 10.3390/plants13091212.
The estimation of crop evapotranspiration (ETc) is crucial for irrigation water management, especially in arid regions. This can be particularly relevant in the Po Valley (Italy), where arable lands suffer from drought damages on an annual basis, causing drastic crop yield losses. This study presents a novel approach for vegetation-based estimation of crop evapotranspiration (ETc) for maize. Three years of high-resolution multispectral satellite (Sentinel-2)-based Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Red Edge Index (NDRE), and Leaf Area Index (LAI) time series data were used to derive crop coefficients of maize in nine plots at the Acqua Campus experimental farm of Irrigation Consortium for the Emilia Romagna Canal (CER), Italy. Since certain vegetation indices (VIs) (such as NDVI) have an exponential nature compared to the other indices, both linear and power regression models were evaluated to estimate the crop coefficient (K). In the context of linear regression, the correlations between Food and Agriculture Organization (FAO)-based K and NDWI, NDRE, NDVI, and LAI-based K were 0.833, 0.870, 0.886, and 0.771, respectively. Strong correlation values in the case of power regression (NDWI: 0.876, NDRE: 0.872, NDVI: 0.888, LAI: 0.746) indicated an alternative approach to provide crop coefficients for the vegetation period. The VI-based ETc values were calculated using reference evapotranspiration (ET) and VI-based K. The weather station data of CER were used to calculate ET based on Penman-Monteith estimation. Out of the Vis, NDWI and NDVI-based ETc performed the best both in the cases of linear (NDWI RMSE: 0.43 ± 0.12; NDVI RMSE: 0.43 ± 0.095) and power (NDWI RMSE: 0.44 ± 0.116; NDVI RMSE: 0.44 ± 0.103) approaches. The findings affirm the efficacy of the developed methodology in accurately assessing the evapotranspiration rate. Consequently, it offers a more refined temporal estimation of water requirements for maize cultivation in the region.
作物蒸散量(ETc)的估算对于灌溉用水管理至关重要,尤其是在干旱地区。这在意大利的波河流域可能尤为重要,那里的耕地每年都遭受干旱破坏,导致作物产量大幅损失。本研究提出了一种基于植被的玉米作物蒸散量(ETc)估算新方法。利用基于三年高分辨率多光谱卫星(哨兵 - 2)的归一化植被指数(NDVI)、归一化水体指数(NDWI)、归一化红边指数(NDRE)和叶面积指数(LAI)时间序列数据,推导意大利艾米利亚 - 罗马涅运河灌溉联盟(CER)阿夸校区实验农场九个地块的玉米作物系数。由于某些植被指数(VIs)(如NDVI)与其他指数相比具有指数性质,因此对线性和幂回归模型都进行了评估,以估算作物系数(K)。在线性回归的情况下,基于联合国粮食及农业组织(FAO)的K与基于NDWI、NDRE、NDVI和LAI的K之间的相关性分别为0.833、0.870、0.886和0.771。幂回归情况下的强相关值(NDWI:0.876,NDRE:0.872,NDVI:0.888,LAI:0.746)表明了一种为植被期提供作物系数的替代方法。基于VI的ETc值是使用参考蒸散量(ET)和基于VI的K计算得出的。CER的气象站数据用于基于彭曼 - 蒙特斯估算来计算ET。在这些VIs中,基于NDWI和NDVI的ETc在直线(NDWI均方根误差:0.43±0.12;NDVI均方根误差:0.43±0.095)和幂(NDWI均方根误差:0.44±0.116;NDVI均方根误差:0.44±0.103)方法中表现最佳。研究结果证实了所开发方法在准确评估蒸散速率方面的有效性。因此,它为该地区玉米种植的需水量提供了更精确的时间估算。