Suppr超能文献

用于检测挥发性有机化合物的荧光中氮茚-β-环糊精衍生物

Fluorescent Indolizine-b-Cyclodextrin Derivatives for the Detection of Volatile Organic Compounds.

作者信息

Becuwe Matthieu, Landy David, Delattre François, Cazier Francine, Fourmentin Sophie

机构信息

Laboratoire de Synthèse Organique et Environnement (EA 2599), 145 Avenue Maurice Schumann, 59140 Dunkerque, France.

出版信息

Sensors (Basel). 2008 Jun 2;8(6):3689-3705. doi: 10.3390/s8063689.

Abstract

This paper presents the synthesis, the structural determination and the sensing capabilities toward Volatile Organic Compounds (VOCs) of a new class of fluorescent indolizine-cyclodextrin sensors. Two different pathways, both involving bipyridinium ylides and 6-amino-b-cyclodextrin, have been used to carry out the synthesis of these sensors. The macrocycle structures were dominantly established by ¹H-NMR spectra and systematically studied by molecular modelling (MM3, AM1, AM1-COSMO methods). The sensing capabilities of the sensors were evaluated by emission of fluorescence, during the inclusion of the guest (adamantanol or aromatic derivatives) into the cyclodextrin (CD) host cavity. The host/guest complex formation was investigated by formation constant determinations, using experimental methods, coupled with theoretical calculations of formation energies using a specific docking procedure. Both experimental and theoretical results suggest that some compounds would make very attractive sensors for VOC detection. Some compounds could also be taken into consideration as biological markers.

摘要

本文介绍了一类新型荧光中氮茚 - 环糊精传感器的合成、结构测定及其对挥发性有机化合物(VOCs)的传感能力。已采用两种不同途径来合成这些传感器,这两种途径均涉及联吡啶叶立德和6 - 氨基 - β - 环糊精。大环结构主要通过¹H - NMR光谱确定,并通过分子建模(MM3、AM1、AM1 - COSMO方法)进行系统研究。在客体(金刚烷醇或芳香衍生物)包合进入环糊精(CD)主体空腔的过程中,通过荧光发射评估传感器的传感能力。通过实验方法测定形成常数,并结合使用特定对接程序对形成能进行理论计算,来研究主体/客体复合物的形成。实验和理论结果均表明,某些化合物将成为用于VOC检测的极具吸引力的传感器。某些化合物也可被视为生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1009/3714660/4f1cdf43fa62/sensors-08-03689f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验