Suppr超能文献

丝氨酸消旋酶在胰岛中表达,并有助于调节葡萄糖稳态。

Serine racemase is expressed in islets and contributes to the regulation of glucose homeostasis.

作者信息

Lockridge Amber D, Baumann Daniel C, Akhaphong Brian, Abrenica Alleah, Miller Robert F, Alejandro Emilyn U

机构信息

a Department of Integrative Biology & Physiology , Minneapolis , MN , USA.

b Department of Neuroscience , University of Minnesota , Minneapolis , MN , USA.

出版信息

Islets. 2016 Nov;8(6):195-206. doi: 10.1080/19382014.2016.1260797.

Abstract

NMDA receptors (NMDARs) have recently been discovered as functional regulators of pancreatic β-cell insulin secretion. While these excitatory receptor channels have been extensively studied in the brain for their role in synaptic plasticity and development, little is known about how they work in β-cells. In neuronal cells, NMDAR activation requires the simultaneous binding of glutamate and a rate-limiting co-agonist, such as D-serine. D-serine levels and availability in most of the brain rely on endogenous synthesis by the enzyme serine racemase (Srr). Srr transcripts have been reported in human and mouse islets but it is not clear whether Srr is functionally expressed in β-cells or what its role in the pancreas might be. In this investigation, we reveal that Srr protein is highly expressed in primary human and mouse β-cells. Mice with whole body deletion of Srr (Srr KO) show improved glucose tolerance through enhanced insulin secretory capacity, possibly through Srr-mediated alterations in islet NMDAR expression and function. We observed elevated insulin sensitivity in some animals, suggesting Srr metabolic regulation in other peripheral organs as well. Srr expression in neonatal and embryonic islets, and adult deficits in Srr KO pancreas weight and islet insulin content, point toward a potential role for Srr in pancreatic development. These data reveal the first evidence that Srr may regulate glucose homeostasis in peripheral tissues and provide circumstantial evidence that D-serine may be an endogenous islet NMDAR co-agonist in β-cells.

摘要

N-甲基-D-天冬氨酸受体(NMDARs)最近被发现是胰腺β细胞胰岛素分泌的功能调节因子。虽然这些兴奋性受体通道在大脑中因其在突触可塑性和发育中的作用而得到广泛研究,但对于它们在β细胞中的工作方式却知之甚少。在神经元细胞中,NMDAR的激活需要谷氨酸和一种限速共激动剂(如D-丝氨酸)同时结合。大脑中大多数区域的D-丝氨酸水平和可用性依赖于丝氨酸消旋酶(Srr)的内源性合成。已报道在人和小鼠胰岛中有Srr转录本,但尚不清楚Srr是否在β细胞中功能性表达,以及它在胰腺中的作用可能是什么。在本研究中,我们发现Srr蛋白在原代人及小鼠β细胞中高度表达。全身缺失Srr的小鼠(Srr基因敲除小鼠,Srr KO)通过增强胰岛素分泌能力表现出改善的糖耐量,可能是通过Srr介导的胰岛NMDAR表达和功能改变实现的。我们在一些动物中观察到胰岛素敏感性升高,这表明Srr在其他外周器官中也有代谢调节作用。Srr在新生儿和胚胎胰岛中的表达,以及Srr KO胰腺重量和胰岛胰岛素含量的成年期缺陷,表明Srr在胰腺发育中可能具有潜在作用。这些数据揭示了Srr可能调节外周组织葡萄糖稳态的首个证据,并提供了间接证据表明D-丝氨酸可能是β细胞中内源性胰岛NMDAR的共激动剂。

相似文献

1
Serine racemase is expressed in islets and contributes to the regulation of glucose homeostasis.
Islets. 2016 Nov;8(6):195-206. doi: 10.1080/19382014.2016.1260797.
2
Levels of D-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice.
Neurochem Int. 2011 Nov;59(6):853-9. doi: 10.1016/j.neuint.2011.08.017. Epub 2011 Aug 28.
3
Characterization and localization of a human serine racemase.
Brain Res Mol Brain Res. 2004 Jun 18;125(1-2):96-104. doi: 10.1016/j.molbrainres.2004.03.007.
5
Postsynaptic Serine Racemase Regulates NMDA Receptor Function.
J Neurosci. 2020 Dec 9;40(50):9564-9575. doi: 10.1523/JNEUROSCI.1525-20.2020. Epub 2020 Nov 6.
6
A novel serine racemase inhibitor suppresses neuronal over-activation in vivo.
Bioorg Med Chem. 2017 Jul 15;25(14):3736-3745. doi: 10.1016/j.bmc.2017.05.011. Epub 2017 May 11.
7
Serine racemase is involved in d-aspartate biosynthesis.
J Biochem. 2016 Dec;160(6):345-353. doi: 10.1093/jb/mvw043. Epub 2016 Jul 7.
8
Serine racemase deletion attenuates neurodegeneration and microvascular damage in diabetic retinopathy.
PLoS One. 2018 Jan 5;13(1):e0190864. doi: 10.1371/journal.pone.0190864. eCollection 2018.
9
Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.
Neurochem Int. 2013 May;62(6):843-7. doi: 10.1016/j.neuint.2013.02.015. Epub 2013 Feb 22.
10
Glycolytic flux controls D-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2217-24. doi: 10.1073/pnas.1416117112. Epub 2015 Apr 13.

引用本文的文献

1
Mammalian Tolerance to Amino Acid Heterochirality.
Chembiochem. 2025 Jul 11;26(13):e202500273. doi: 10.1002/cbic.202500273. Epub 2025 Jun 19.
3
d-amino acids: new functional insights.
FEBS J. 2025 Sep;292(17):4395-4417. doi: 10.1111/febs.70083. Epub 2025 Mar 27.
4
Mammalian D-Cysteine controls insulin secretion in the pancreas.
Mol Metab. 2024 Dec;90:102043. doi: 10.1016/j.molmet.2024.102043. Epub 2024 Oct 3.
6
Analysis of D-amino acids secreted from murine islets of Langerhans using Marfey's reagent and reversed phase LC-MS/MS.
J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Dec 1;1231:123928. doi: 10.1016/j.jchromb.2023.123928. Epub 2023 Nov 10.
8
Integrated Bioinformatics Analysis of Serine Racemase as an Independent Prognostic Biomarker in Endometrial Cancer.
Front Genet. 2022 Jul 18;13:906291. doi: 10.3389/fgene.2022.906291. eCollection 2022.
9
Profiling of d-alanine production by the microbial isolates of rat gut microbiota.
FASEB J. 2022 Aug;36(8):e22446. doi: 10.1096/fj.202101595R.
10
Potential Therapeutic Targeting Neurotransmitter Receptors in Diabetes.
Front Endocrinol (Lausanne). 2022 May 20;13:884549. doi: 10.3389/fendo.2022.884549. eCollection 2022.

本文引用的文献

1
Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes.
Cell Metab. 2016 Oct 11;24(4):593-607. doi: 10.1016/j.cmet.2016.08.020. Epub 2016 Sep 22.
2
The role of D-serine in peripheral tissues.
Eur J Pharmacol. 2016 Jun 5;780:216-23. doi: 10.1016/j.ejphar.2016.03.054. Epub 2016 Mar 31.
3
Disruption of O-linked N-Acetylglucosamine Signaling Induces ER Stress and β Cell Failure.
Cell Rep. 2015 Dec 22;13(11):2527-2538. doi: 10.1016/j.celrep.2015.11.020. Epub 2015 Dec 8.
5
Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency.
PLoS One. 2015 Jul 2;10(7):e0132204. doi: 10.1371/journal.pone.0132204. eCollection 2015.
6
Time and space profiling of NMDA receptor co-agonist functions.
J Neurochem. 2015 Oct;135(2):210-25. doi: 10.1111/jnc.13204. Epub 2015 Aug 3.
9
Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment.
Nat Med. 2015 Apr;21(4):363-72. doi: 10.1038/nm.3822. Epub 2015 Mar 16.
10
Long-term potentiation and the role of N-methyl-D-aspartate receptors.
Brain Res. 2015 Sep 24;1621:5-16. doi: 10.1016/j.brainres.2015.01.016. Epub 2015 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验