Suppr超能文献

在空中的哪里?夜间迁徙鸟类的空中栖息地利用情况。

Where in the air? Aerial habitat use of nocturnally migrating birds.

作者信息

Horton Kyle G, Van Doren Benjamin M, Stepanian Phillip M, Farnsworth Andrew, Kelly Jeffrey F

机构信息

Department of Biology, University of Oklahoma, Norman, OK, USA

Oklahoma Biological Survey, University of Oklahoma, Norman, OK, USA.

出版信息

Biol Lett. 2016 Nov;12(11). doi: 10.1098/rsbl.2016.0591.

Abstract

The lower atmosphere (i.e. aerosphere) is critical habitat for migrant birds. This habitat is vast and little is known about the spatio-temporal patterns of distribution and abundance of migrants in it. Increased human encroachment into the aerosphere makes understanding where and when migratory birds use this airspace a key to reducing human-wildlife conflicts. We use weather surveillance radar to describe large-scale height distributions of nocturnally migrating birds and interpret these distributions as aggregate habitat selection behaviours of individual birds. As such, we detail wind cues that influence selection of flight heights. Using six radars in the eastern USA during the spring (2013-2015) and autumn (2013 and 2014), we found migrants tended to adjust their heights according to favourable wind profit. We found that migrants' flight altitudes correlated most closely with the altitude of maximum wind profit; however, absolute differences in flight heights and height of maximum wind profit were large. Migrants tended to fly slightly higher at inland sites compared with coastal sites during spring, but not during autumn. Migration activity was greater at coastal sites during autumn, but not during spring. This characterization of bird migration represents a critical advance in our understanding of migrant distributions in flight and a new window into habitat selection behaviours.

摘要

低层大气(即气圈)是候鸟的关键栖息地。这片栖息地广阔,人们对其中候鸟分布和数量的时空模式知之甚少。人类对气圈的 encroachment 不断增加,这使得了解候鸟在何时何地使用这片空域成为减少人类与野生动物冲突的关键。我们使用气象监测雷达来描述夜间迁徙鸟类的大规模高度分布,并将这些分布解释为个体鸟类的总体栖息地选择行为。因此,我们详细说明了影响飞行高度选择的风向线索。在2013年至2015年春季以及2013年和2014年秋季期间,我们在美国东部使用了六个雷达,发现候鸟倾向于根据有利的风向收益来调整高度。我们发现,候鸟的飞行高度与最大风向收益高度最为密切相关;然而,飞行高度与最大风向收益高度的绝对差异很大。春季时,内陆地区的候鸟飞行高度往往比沿海地区略高,但秋季并非如此。秋季时,沿海地区的迁徙活动更为频繁,但春季并非如此。这种对鸟类迁徙的描述代表了我们对飞行中候鸟分布理解的关键进展,以及对栖息地选择行为的新视角。 (注:“encroachment”原词未翻译,因为不确定其准确含义,需根据上下文判断,这里保留英文以便准确理解原文语境)

相似文献

1
Where in the air? Aerial habitat use of nocturnally migrating birds.
Biol Lett. 2016 Nov;12(11). doi: 10.1098/rsbl.2016.0591.
2
Urban areas affect flight altitudes of nocturnally migrating birds.
J Anim Ecol. 2019 Dec;88(12):1873-1887. doi: 10.1111/1365-2656.13075. Epub 2019 Aug 15.
3
Migratory flight on the Pacific Flyway: strategies and tendencies of wind drift compensation.
Biol Lett. 2019 Sep 27;15(9):20190383. doi: 10.1098/rsbl.2019.0383. Epub 2019 Sep 18.
5
The role of the US Great Plains low-level jet in nocturnal migrant behavior.
Int J Biometeorol. 2016 Oct;60(10):1531-1542. doi: 10.1007/s00484-016-1144-9. Epub 2016 Feb 13.
6
Projected changes in wind assistance under climate change for nocturnally migrating bird populations.
Glob Chang Biol. 2019 Feb;25(2):589-601. doi: 10.1111/gcb.14531. Epub 2018 Dec 9.
8
Bird migration flight altitudes studied by a network of operational weather radars.
J R Soc Interface. 2011 Jan 6;8(54):30-43. doi: 10.1098/rsif.2010.0116. Epub 2010 Jun 2.
9
A place to land: spatiotemporal drivers of stopover habitat use by migrating birds.
Ecol Lett. 2021 Jan;24(1):38-49. doi: 10.1111/ele.13618. Epub 2020 Oct 7.
10

引用本文的文献

1
Stable atmospheric conditions underlie a steady pace of nocturnal bird migration in the tropics.
Proc Biol Sci. 2025 Jun;292(2048):20242609. doi: 10.1098/rspb.2024.2609. Epub 2025 Jun 11.
2
Biological data derived from European weather radars.
Sci Data. 2025 Feb 28;12(1):361. doi: 10.1038/s41597-025-04641-5.
3
What causes bird-building collision risk? Seasonal dynamics and weather drivers.
Ecol Evol. 2023 Apr 7;13(4):e9974. doi: 10.1002/ece3.9974. eCollection 2023 Apr.
4
X,Y, and Z: A bird's eye view on light pollution.
Ecol Evol. 2022 Dec 15;12(12):e9608. doi: 10.1002/ece3.9608. eCollection 2022 Dec.
5
Favorable winds speed up bird migration in spring but not in autumn.
Ecol Evol. 2022 Jul 31;12(8):e9146. doi: 10.1002/ece3.9146. eCollection 2022 Aug.
7
Nocturnal flight-calling behaviour predicts vulnerability to artificial light in migratory birds.
Proc Biol Sci. 2019 Apr 10;286(1900):20190364. doi: 10.1098/rspb.2019.0364.
8
High-intensity urban light installation dramatically alters nocturnal bird migration.
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11175-11180. doi: 10.1073/pnas.1708574114. Epub 2017 Oct 2.
9
Atmospheric conditions create freeways, detours and tailbacks for migrating birds.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Jul;203(6-7):509-529. doi: 10.1007/s00359-017-1181-9. Epub 2017 May 15.

本文引用的文献

1
Seasonal changes in the altitudinal distribution of nocturnally migrating birds during autumn migration.
R Soc Open Sci. 2015 Dec 9;2(12):150347. doi: 10.1098/rsos.150347. eCollection 2015 Dec.
3
Convergence of broad-scale migration strategies in terrestrial birds.
Proc Biol Sci. 2016 Jan 27;283(1823). doi: 10.1098/rspb.2015.2588.
4
First evidence of a 200-day non-stop flight in a bird.
Nat Commun. 2013;4:2554. doi: 10.1038/ncomms3554.
5
The airspace is habitat.
Trends Ecol Evol. 2013 Jul;28(7):377-9. doi: 10.1016/j.tree.2013.02.015. Epub 2013 Mar 15.
6
High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.
PLoS One. 2013;8(1):e52300. doi: 10.1371/journal.pone.0052300. Epub 2013 Jan 3.
7
Bird migration flight altitudes studied by a network of operational weather radars.
J R Soc Interface. 2011 Jan 6;8(54):30-43. doi: 10.1098/rsif.2010.0116. Epub 2010 Jun 2.
8
Flight orientation behaviors promote optimal migration trajectories in high-flying insects.
Science. 2010 Feb 5;327(5966):682-5. doi: 10.1126/science.1182990.
9
The problem of estimating wind drift in migrating birds.
J Theor Biol. 2002 Oct 21;218(4):485-96.
10
Metabolic constraints on long-distance migration in birds.
J Exp Biol. 1996;199(Pt 1):57-64. doi: 10.1242/jeb.199.1.57.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验