Selten Gijs, de Jonge Ronnie
Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.
Department of Information and Computing Sciences, AI Technology for Life, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.
Genome Biol. 2025 Sep 9;26(1):270. doi: 10.1186/s13059-025-03739-8.
Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs). Recently, an increasing number of studies employed SynComs to investigate root microbiome assembly and dynamics under various conditions or with specific plant mutants. These studies have identified bacterial traits linked to root competence, but if and how these traits shape root microbiome dynamics across conditions is not well understood.
To explore whether bacterial trait selection follows recurrent patterns, we conducted a meta-analysis of nine SynCom studies involving plant roots. Surprisingly, we observed that root communities frequently assemble into two distinct functional states. Further analysis revealed that these states are characterized by differences in the abundance of Bacilli. We propose that these Bacilli-associated functional states are driven by microbial interactions such as quorum sensing and biofilm formation and that host activities, including root exudation and immune responses, influence these functional states.
Whether natural root communities also organize into distinct functional states remains unclear, but the implications could be significant. Functional diversification within root communities may influence the effectiveness of plant-beneficial bioinoculants, particularly Bacilli-based inoculants. To optimize microbiome-driven plant benefits, a deeper understanding of the mechanisms underlying functional state differentiation in root microbiomes is needed.
植物根系释放根际分泌物以吸引形成根际群落的微生物,而这些微生物反过来又促进植物的健康和生长。根际群落的组装源于微生物与植物之间数百万次的相互作用,从而形成强大而稳定的微生物网络。为了便于研究而管理天然根际微生物组的复杂性,科学家们开发了使用合成微生物接种物(SynComs)的简化方法。最近,越来越多的研究采用SynComs来研究各种条件下或特定植物突变体的根际微生物组组装和动态变化。这些研究已经确定了与根系定殖能力相关的细菌特性,但这些特性是否以及如何在不同条件下塑造根际微生物组动态变化尚不清楚。
为了探究细菌特性选择是否遵循重复模式,我们对九项涉及植物根系的SynCom研究进行了荟萃分析。令人惊讶的是,我们观察到根际群落经常组装成两种不同的功能状态。进一步分析表明,这些状态的特征是芽孢杆菌丰度的差异。我们提出,这些与芽孢杆菌相关的功能状态是由群体感应和生物膜形成等微生物相互作用驱动的,而宿主活动,包括根系分泌物和免疫反应,会影响这些功能状态。
天然根际群落是否也会组织成不同的功能状态尚不清楚,但可能具有重要意义。根际群落内的功能多样化可能会影响植物有益生物接种剂的有效性,特别是基于芽孢杆菌的接种剂。为了优化微生物组驱动的植物效益,需要更深入地了解根际微生物组功能状态分化的潜在机制。