Suppr超能文献

鞘氨醇 1-磷酸酶缺失通过泛素-蛋白酶体介导的机制破坏突触前结构和功能。

Sphingosine 1-phosphate lyase ablation disrupts presynaptic architecture and function via an ubiquitin- proteasome mediated mechanism.

机构信息

LIMES Institute, Membrane Biology &Lipid Biochemistry, University of Bonn, Bonn, Germany.

Institute of Physiology, University of Bonn, Bonn, Germany.

出版信息

Sci Rep. 2016 Nov 24;6:37064. doi: 10.1038/srep37064.

Abstract

The bioactive lipid sphingosine 1-phosphate (S1P) is a degradation product of sphingolipids that are particularly abundant in neurons. We have shown previously that neuronal S1P accumulation is toxic leading to ER-stress and an increase in intracellular calcium. To clarify the neuronal function of S1P, we generated brain-specific knockout mouse models in which S1P-lyase (SPL), the enzyme responsible for irreversible S1P cleavage was inactivated. Constitutive ablation of SPL in the brain (SPL) but not postnatal neuronal forebrain-restricted SPL deletion (SPL) caused marked accumulation of S1P. Hence, altered presynaptic architecture including a significant decrease in number and density of synaptic vesicles, decreased expression of several presynaptic proteins, and impaired synaptic short term plasticity were observed in hippocampal neurons from SPL mice. Accordingly, these mice displayed cognitive deficits. At the molecular level, an activation of the ubiquitin-proteasome system (UPS) was detected which resulted in a decreased expression of the deubiquitinating enzyme USP14 and several presynaptic proteins. Upon inhibition of proteasomal activity, USP14 levels, expression of presynaptic proteins and synaptic function were restored. These findings identify S1P metabolism as a novel player in modulating synaptic architecture and plasticity.

摘要

生物活性脂质鞘氨醇 1-磷酸(S1P)是鞘脂的降解产物,在神经元中特别丰富。我们之前已经表明,神经元 S1P 的积累是有毒的,导致内质网应激和细胞内钙离子增加。为了阐明 S1P 的神经元功能,我们生成了大脑特异性敲除小鼠模型,其中负责不可逆 S1P 切割的酶鞘氨醇磷酸酶(SPL)失活。脑内 SPL 的组成性缺失(SPL)而不是出生后神经元前脑特异性 SPL 缺失(SPL)导致 S1P 的明显积累。因此,在 SPL 小鼠的海马神经元中观察到突触前结构的改变,包括突触小泡数量和密度的显著减少、几种突触前蛋白的表达减少以及突触短期可塑性受损。因此,这些小鼠表现出认知缺陷。在分子水平上,检测到泛素-蛋白酶体系统(UPS)的激活,导致去泛素化酶 USP14 和几种突触前蛋白的表达减少。当抑制蛋白酶体活性时,USP14 水平、突触前蛋白的表达和突触功能得到恢复。这些发现确定 S1P 代谢作为调节突触结构和可塑性的新参与者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63aa/5121647/aa85f75d1477/srep37064-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验