Lahouar Amani, Marin Sonia, Crespo-Sempere Ana, Saïd Salem, Sanchis Vicente
Food Technology Department, University of Lleida, XaRTA-UTPV, Agrotecnico Center, Rovira Roure 191, 25198 Lleida, Spain; Laboratory of Biochemistry, Unity of Mycotoxicology, Faculty of Medicine of Sousse, University of Sousse, Mohamed Karoui, 4002 Sousse, Tunisia.
Food Technology Department, University of Lleida, XaRTA-UTPV, Agrotecnico Center, Rovira Roure 191, 25198 Lleida, Spain.
Int J Food Microbiol. 2017 Feb 2;242:53-60. doi: 10.1016/j.ijfoodmicro.2016.11.015. Epub 2016 Nov 17.
The major objective of this study was to describe the effect of water activity and temperature on radial growth and production of ochratoxin A (OTA) and zearalenone (ZEA) on sorghum grains of three Aspergillus tubingensis and three Fusarium incarnatum isolates. The water activity range was 0.91-0.99 a for F. incarnatum isolates and 0.88-0.99 a for A. tubingensis isolates. Temperatures of incubation were 15, 25 and 37°C for both species. Mycotoxin production was determined after 7, 14, 21 and 28days depending on the growth rate of the six isolates. Maximum growth rates (mm/day) were observed at 37°C and 0.99 a for A. tubingensis isolates and at 0.99 a and 25°C for F. incarnatum isolates. A. tubingensis was able to grow at 15°C only at the highest a levels (0.97 and 0.99 a). However, at this temperature F. incarnatum grew at 0.94 a. Optimum ochratoxin A production was observed at 0.97 a×37°C whereas optimal conditions for ZEA production varied from one isolate to another. Moreover, isolates of F. incarnatum from Tunisia do not require high a and temperature levels to yield maximum levels of ZEA. In general, our results showed that there is no correlation between the growth and production of ZEA in the case of F. incarnatum. This is the first study on the water activity and temperature effect on growth rate and ZEA production of F. incarnatum. Our results show that sorghum grains not only support growth but also OTA and ZEA production by A. tubingensis and F. incarnatum, respectively.
本研究的主要目的是描述水分活度和温度对三种管囊曲霉和三种禾谷镰刀菌在高粱籽粒上的径向生长以及赭曲霉毒素A(OTA)和玉米赤霉烯酮(ZEA)产生的影响。禾谷镰刀菌分离株的水分活度范围为0.91 - 0.99a,管囊曲霉分离株的水分活度范围为0.88 - 0.99a。两种菌的培养温度均为15、25和37°C。根据六种分离株的生长速率,在7、14、21和28天后测定霉菌毒素的产生情况。管囊曲霉分离株在37°C和0.99a时观察到最大生长速率(毫米/天),禾谷镰刀菌分离株在0.99a和25°C时观察到最大生长速率。管囊曲霉仅在最高水分活度水平(0.97和0.99a)下能在15°C生长。然而,在这个温度下,禾谷镰刀菌在0.94a时生长。在0.97a×37°C时观察到赭曲霉毒素A的最佳产生情况,而玉米赤霉烯酮产生的最佳条件因分离株而异。此外,来自突尼斯的禾谷镰刀菌分离株不需要高水分活度和温度水平就能产生最大水平的玉米赤霉烯酮。总体而言,我们的结果表明,在禾谷镰刀菌的情况下玉米赤霉烯酮的生长和产生之间没有相关性。这是第一项关于水分活度和温度对禾谷镰刀菌生长速率和玉米赤霉烯酮产生影响的研究。我们的结果表明,高粱籽粒不仅支持管囊曲霉和禾谷镰刀菌的生长,还分别支持它们产生OTA和ZEA。