Suppr超能文献

“适当”双正态ROC曲线的可靠且计算高效的最大似然估计。

Reliable and computationally efficient maximum-likelihood estimation of "proper" binormal ROC curves.

作者信息

Pesce Lorenzo L, Metz Charles E

机构信息

Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637-1470, USA.

出版信息

Acad Radiol. 2007 Jul;14(7):814-29. doi: 10.1016/j.acra.2007.03.012.

Abstract

RATIONALE AND OBJECTIVES

Estimation of ROC curves and their associated indices from experimental data can be problematic, especially in multireader, multicase (MRMC) observer studies. Wilcoxon estimates of area under the curve (AUC) can be strongly biased with categorical data, whereas the conventional binormal ROC curve-fitting model may produce unrealistic fits. The "proper" binormal model (PBM) was introduced by Metz and Pan to provide acceptable fits for both sturdy and problematic datasets, but other investigators found that its first software implementation was numerically unstable in some situations. Therefore, we created an entirely new algorithm to implement the PBM.

MATERIALS AND METHODS

This paper describes in detail the new PBM curve-fitting algorithm, which was designed to perform successfully in all problematic situations encountered previously. Extensive testing was conducted also on a broad variety of simulated and real datasets. Windows, Linux, and Apple Macintosh OS X versions of the algorithm are available online at http://xray.bsd.uchicago.edu/krl/.

RESULTS

Plots of fitted curves as well as summaries of AUC estimates and their standard errors are reported. The new algorithm never failed to converge and produced good fits for all of the several million datasets on which it was tested. For all but the most problematic datasets, the algorithm also produced very good estimates of AUC standard error. The AUC estimates compared well with Wilcoxon estimates for continuously distributed data and are expected to be superior for categorical data.

CONCLUSION

This implementation of the PBM is reliable in a wide variety of ROC curve-fitting tasks.

摘要

原理与目的

从实验数据估计ROC曲线及其相关指标可能存在问题,尤其是在多读者、多病例(MRMC)观察者研究中。曲线下面积(AUC)的Wilcoxon估计对于分类数据可能存在强烈偏差,而传统的双正态ROC曲线拟合模型可能会产生不切实际的拟合。Metz和Pan引入了“适当”双正态模型(PBM),以便为稳健和有问题的数据集都提供可接受的拟合,但其他研究者发现其最初的软件实现在某些情况下数值不稳定。因此,我们创建了一种全新的算法来实现PBM。

材料与方法

本文详细描述了新的PBM曲线拟合算法,该算法旨在在之前遇到的所有有问题的情况下都能成功运行。还对各种模拟和真实数据集进行了广泛测试。该算法的Windows、Linux和苹果Macintosh OS X版本可在http://xray.bsd.uchicago.edu/krl/在线获取。

结果

报告了拟合曲线的图以及AUC估计值及其标准误差的汇总。新算法从未出现收敛失败的情况,并且在其测试的数百万个数据集中的所有数据集上都产生了良好的拟合。对于除最有问题的数据集之外的所有数据集,该算法还对AUC标准误差产生了非常好的估计。对于连续分布的数据,AUC估计值与Wilcoxon估计值相比效果良好,并且预计在分类数据方面更具优势。

结论

PBM的这种实现在各种ROC曲线拟合任务中都是可靠的。

相似文献

1
Reliable and computationally efficient maximum-likelihood estimation of "proper" binormal ROC curves.
Acad Radiol. 2007 Jul;14(7):814-29. doi: 10.1016/j.acra.2007.03.012.
3
Estimating the Area Under ROC Curve When the Fitted Binormal Curves Demonstrate Improper Shape.
Acad Radiol. 2017 Feb;24(2):209-219. doi: 10.1016/j.acra.2016.09.020. Epub 2016 Nov 21.
6
Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data.
Stat Med. 1998 May 15;17(9):1033-53. doi: 10.1002/(sici)1097-0258(19980515)17:9<1033::aid-sim784>3.0.co;2-z.
7
"Proper" Binormal ROC Curves: Theory and Maximum-Likelihood Estimation.
J Math Psychol. 1999 Mar;43(1):1-33. doi: 10.1006/jmps.1998.1218.
8
Statistical comparison of two ROC-curve estimates obtained from partially-paired datasets.
Med Decis Making. 1998 Jan-Mar;18(1):110-21. doi: 10.1177/0272989X9801800118.
10
Verification of modified receiver-operating characteristic software using simulated rating data.
Radiol Phys Technol. 2018 Dec;11(4):406-414. doi: 10.1007/s12194-018-0479-9. Epub 2018 Sep 22.

引用本文的文献

2
Radiomics and quantitative multi-parametric MRI for predicting uterine fibroid growth.
J Med Imaging (Bellingham). 2024 Sep;11(5):054501. doi: 10.1117/1.JMI.11.5.054501. Epub 2024 Sep 12.
3
Investigating the Use of Traveltime and Reflection Tomography for Deep Learning-Based Sound-Speed Estimation in Ultrasound Computed Tomography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Nov;71(11):1358-1376. doi: 10.1109/TUFFC.2024.3459391. Epub 2024 Nov 27.
4
Investigating the use of signal detection information in supervised learning-based image denoising with consideration of task-shift.
J Med Imaging (Bellingham). 2024 Sep;11(5):055501. doi: 10.1117/1.JMI.11.5.055501. Epub 2024 Sep 5.
5
Ideal Observer Computation by Use of Markov-Chain Monte Carlo With Generative Adversarial Networks.
IEEE Trans Med Imaging. 2023 Dec;42(12):3715-3724. doi: 10.1109/TMI.2023.3304907. Epub 2023 Nov 30.
6
Assessing the Impact of Deep Neural Network-Based Image Denoising on Binary Signal Detection Tasks.
IEEE Trans Med Imaging. 2021 Sep;40(9):2295-2305. doi: 10.1109/TMI.2021.3076810. Epub 2021 Aug 31.
8
Approximating the Ideal Observer and Hotelling Observer for Binary Signal Detection Tasks by Use of Supervised Learning Methods.
IEEE Trans Med Imaging. 2019 Oct;38(10):2456-2468. doi: 10.1109/TMI.2019.2911211. Epub 2019 Apr 15.
9
PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images.
J Med Imaging (Bellingham). 2018 Oct;5(4):044501. doi: 10.1117/1.JMI.5.4.044501. Epub 2018 Nov 10.
10
Digital Mammography in Breast Cancer: Additive Value of Radiomics of Breast Parenchyma.
Radiology. 2019 Apr;291(1):15-20. doi: 10.1148/radiol.2019181113. Epub 2019 Feb 12.

本文引用的文献

1
One-shot estimate of MRMC variance: AUC.
Acad Radiol. 2006 Mar;13(3):353-62. doi: 10.1016/j.acra.2005.11.030.
2
Incorporating utility-weights when comparing two diagnostic systems: a preliminary assessment.
Acad Radiol. 2005 Oct;12(10):1293-300. doi: 10.1016/j.acra.2005.05.028.
3
Estimating and comparing diagnostic tests' accuracy when the gold standard is not binary.
Acad Radiol. 2005 Sep;12(9):1198-204. doi: 10.1016/j.acra.2005.05.013.
5
Ideal observers and optimal ROC hypersurfaces in N-class classification.
IEEE Trans Med Imaging. 2004 Jul;23(7):891-5. doi: 10.1109/TMI.2004.828358.
6
Assessment of medical imaging and computer-assist systems: lessons from recent experience.
Acad Radiol. 2002 Nov;9(11):1264-77. doi: 10.1016/s1076-6332(03)80560-3.
7
Ideal observer approximation using Bayesian classification neural networks.
IEEE Trans Med Imaging. 2001 Sep;20(9):886-99. doi: 10.1109/42.952727.
8
A contaminated binormal model for ROC data: Part III. Initial evaluation with detection ROC data.
Acad Radiol. 2000 Jun;7(6):438-47. doi: 10.1016/s1076-6332(00)80384-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验