Suppr超能文献

海马体中空间编码背后的神经活动模式。

Neural Activity Patterns Underlying Spatial Coding in the Hippocampus.

作者信息

Sosa Marielena, Gillespie Anna K, Frank Loren M

机构信息

Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, USA.

Howard Hughes Medical Institute, Maryland, USA.

出版信息

Curr Top Behav Neurosci. 2018;37:43-100. doi: 10.1007/7854_2016_462.

Abstract

The hippocampus is well known as a central site for memory processing-critical for storing and later retrieving the experiences events of daily life so they can be used to shape future behavior. Much of what we know about the physiology underlying hippocampal function comes from spatial navigation studies in rodents, which have allowed great strides in understanding how the hippocampus represents experience at the cellular level. However, it remains a challenge to reconcile our knowledge of spatial encoding in the hippocampus with its demonstrated role in memory-dependent tasks in both humans and other animals. Moreover, our understanding of how networks of neurons coordinate their activity within and across hippocampal subregions to enable the encoding, consolidation, and retrieval of memories is incomplete. In this chapter, we explore how information may be represented at the cellular level and processed via coordinated patterns of activity throughout the subregions of the hippocampal network.

摘要

海马体作为记忆处理的核心部位广为人知,它对于存储和日后检索日常生活中的经历事件至关重要,从而使这些经历能够用于塑造未来的行为。我们对海马体功能背后生理学的许多了解都来自于对啮齿动物的空间导航研究,这些研究在理解海马体如何在细胞水平上表征经历方面取得了巨大进展。然而,要将我们对海马体空间编码的认识与它在人类和其他动物的记忆相关任务中所发挥的作用协调起来,仍然是一项挑战。此外,我们对于神经元网络如何在海马体亚区域内以及跨海马体亚区域协调它们的活动以实现记忆的编码、巩固和检索的理解并不完整。在本章中,我们将探讨信息如何在细胞水平上被表征,以及如何通过海马体网络各亚区域中协调的活动模式进行处理。

相似文献

1
Neural Activity Patterns Underlying Spatial Coding in the Hippocampus.
Curr Top Behav Neurosci. 2018;37:43-100. doi: 10.1007/7854_2016_462.
3
Hippocampal ripples as a mode of communication with cortical and subcortical areas.
Hippocampus. 2020 Jan;30(1):39-49. doi: 10.1002/hipo.22997. Epub 2018 Nov 13.
4
Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States.
J Neurosci. 2017 Dec 6;37(49):11789-11805. doi: 10.1523/JNEUROSCI.2291-17.2017. Epub 2017 Oct 31.
5
Megamap: flexible representation of a large space embedded with nonspatial information by a hippocampal attractor network.
J Neurophysiol. 2016 Aug 1;116(2):868-91. doi: 10.1152/jn.00856.2015. Epub 2016 May 18.
6
Hippocampal network oscillations as mediators of behavioural metaplasticity: Insights from emotional learning.
Neurobiol Learn Mem. 2018 Oct;154:37-53. doi: 10.1016/j.nlm.2018.02.022. Epub 2018 Feb 21.
7
Spatial learning and action planning in a prefrontal cortical network model.
PLoS Comput Biol. 2011 May;7(5):e1002045. doi: 10.1371/journal.pcbi.1002045. Epub 2011 May 19.
8
Phencyclidine Discoordinates Hippocampal Network Activity But Not Place Fields.
J Neurosci. 2017 Dec 6;37(49):12031-12049. doi: 10.1523/JNEUROSCI.0630-17.2017. Epub 2017 Nov 8.
9
Memory, navigation and theta rhythm in the hippocampal-entorhinal system.
Nat Neurosci. 2013 Feb;16(2):130-8. doi: 10.1038/nn.3304. Epub 2013 Jan 28.
10
Progress on the hippocampal circuits and functions based on sharp wave ripples.
Brain Res Bull. 2023 Aug;200:110695. doi: 10.1016/j.brainresbull.2023.110695. Epub 2023 Jun 21.

引用本文的文献

1
The effects of music and darkness on radionuclide distribution during mice FDG-PET scan.
Iran J Vet Res. 2025;25(4):319-325. doi: 10.22099/ijvr.2024.49641.7306.
2
Sparing the Hippocampus in Prophylactic Cranial Irradiation Using Three Different Linear Accelerators: A Comparative Study.
Cureus. 2024 Jun 25;16(6):e63137. doi: 10.7759/cureus.63137. eCollection 2024 Jun.
3
A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation.
Nat Commun. 2024 May 15;15(1):4122. doi: 10.1038/s41467-024-48483-y.
4
2P-NucTag: on-demand phototagging for molecular analysis of functionally identified cortical neurons.
bioRxiv. 2024 Sep 4:2024.03.21.586118. doi: 10.1101/2024.03.21.586118.
5
A consistent map in the medial entorhinal cortex supports spatial memory.
Nat Commun. 2024 Feb 17;15(1):1457. doi: 10.1038/s41467-024-45853-4.
6
A consistent map in the medial entorhinal cortex supports spatial memory.
bioRxiv. 2023 Oct 2:2023.09.30.560254. doi: 10.1101/2023.09.30.560254.
8
Voltage-Gated Na Channels in Alzheimer's Disease: Physiological Roles and Therapeutic Potential.
Life (Basel). 2023 Jul 29;13(8):1655. doi: 10.3390/life13081655.
9
Neural ensembles in navigation: From single cells to population codes.
Curr Opin Neurobiol. 2023 Feb;78:102665. doi: 10.1016/j.conb.2022.102665. Epub 2022 Dec 19.

本文引用的文献

1
Apolipoprotein E4 Causes Age-Dependent Disruption of Slow Gamma Oscillations during Hippocampal Sharp-Wave Ripples.
Neuron. 2016 May 18;90(4):740-51. doi: 10.1016/j.neuron.2016.04.009. Epub 2016 May 5.
2
Coordinated Excitation and Inhibition of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events.
Neuron. 2016 Apr 6;90(1):113-27. doi: 10.1016/j.neuron.2016.02.010. Epub 2016 Mar 10.
3
Distinct Contribution of Adult-Born Hippocampal Granule Cells to Context Encoding.
Neuron. 2016 Apr 6;90(1):101-12. doi: 10.1016/j.neuron.2016.02.019. Epub 2016 Mar 10.
4
A hippocampal network for spatial coding during immobility and sleep.
Nature. 2016 Mar 10;531(7593):185-90. doi: 10.1038/nature17144. Epub 2016 Mar 2.
6
Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network.
Curr Biol. 2016 Mar 7;26(5):686-91. doi: 10.1016/j.cub.2016.01.017. Epub 2016 Feb 18.
7
Direct Ventral Hippocampal-Prefrontal Input Is Required for Anxiety-Related Neural Activity and Behavior.
Neuron. 2016 Feb 17;89(4):857-66. doi: 10.1016/j.neuron.2016.01.011. Epub 2016 Feb 4.
8
Nonspatial Sequence Coding in CA1 Neurons.
J Neurosci. 2016 Feb 3;36(5):1547-63. doi: 10.1523/JNEUROSCI.2874-15.2016.
9
Hippocampal-Prefrontal Theta Oscillations Support Memory Integration.
Curr Biol. 2016 Feb 22;26(4):450-7. doi: 10.1016/j.cub.2015.12.048. Epub 2016 Jan 28.
10
Rediscovering area CA2: unique properties and functions.
Nat Rev Neurosci. 2016 Feb;17(2):89-102. doi: 10.1038/nrn.2015.22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验