Kaplan Raphael, Adhikari Mohit H, Hindriks Rikkert, Mantini Dante, Murayama Yusuke, Logothetis Nikos K, Deco Gustavo
Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK; Center for Brain and Cognition, Departament de Tecnologies de la Informació I les Comunicacions, Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain.
Center for Brain and Cognition, Departament de Tecnologies de la Informació I les Comunicacions, Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain.
Curr Biol. 2016 Mar 7;26(5):686-91. doi: 10.1016/j.cub.2016.01.017. Epub 2016 Feb 18.
The default mode network (DMN) is a commonly observed resting-state network (RSN) that includes medial temporal, parietal, and prefrontal regions involved in episodic memory [1-3]. The behavioral relevance of endogenous DMN activity remains elusive, despite an emerging literature correlating resting fMRI fluctuations with memory performance [4, 5]-particularly in DMN regions [6-8]. Mechanistic support for the DMN's role in memory consolidation might come from investigation of large deflections (sharp-waves) in the hippocampal local field potential that co-occur with high-frequency (>80 Hz) oscillations called ripples-both during sleep [9, 10] and awake deliberative periods [11-13]. Ripples are ideally suited for memory consolidation [14, 15], since the reactivation of hippocampal place cell ensembles occurs during ripples [16-19]. Moreover, the number of ripples after learning predicts subsequent memory performance in rodents [20-22] and humans [23], whereas electrical stimulation of the hippocampus after learning interferes with memory consolidation [24-26]. A recent study in macaques showed diffuse fMRI neocortical activation and subcortical deactivation specifically after ripples [27]. Yet it is unclear whether ripples and other hippocampal neural events influence endogenous fluctuations in specific RSNs-like the DMN-unitarily. Here, we examine fMRI datasets from anesthetized monkeys with simultaneous hippocampal electrophysiology recordings, where we observe a dramatic increase in the DMN fMRI signal following ripples, but not following other hippocampal electrophysiological events. Crucially, we find increases in ongoing DMN activity after ripples, but not in other RSNs. Our results relate endogenous DMN fluctuations to hippocampal ripples, thereby linking network-level resting fMRI fluctuations with behaviorally relevant circuit-level neural dynamics.
默认模式网络(DMN)是一种常见的静息态网络(RSN),包括参与情景记忆的内侧颞叶、顶叶和前额叶区域[1-3]。尽管有越来越多的文献将静息态功能磁共振成像(fMRI)波动与记忆表现相关联[4,5],尤其是在DMN区域[6-8],但内源性DMN活动的行为相关性仍然难以捉摸。对DMN在记忆巩固中作用的机制支持可能来自于对海马局部场电位中与高频(>80 Hz)振荡(称为涟漪)同时出现的大幅偏转(尖波)的研究,这些振荡在睡眠[9,10]和清醒思考期[11-13]都会出现。涟漪非常适合记忆巩固[14,15],因为海马位置细胞集合的重新激活发生在涟漪期间[16-19]。此外,学习后涟漪的数量可预测啮齿动物[20-22]和人类[23]随后的记忆表现,而学习后对海马的电刺激会干扰记忆巩固[24-26]。最近一项针对猕猴的研究表明,特别是在涟漪出现后,功能性磁共振成像显示新皮层出现弥漫性激活,皮层下出现失活[27]。然而,尚不清楚涟漪和其他海马神经事件是否单独影响特定RSN(如DMN)中的内源性波动。在这里,我们检查了来自麻醉猴子的功能磁共振成像数据集,并同时进行海马电生理记录,我们观察到涟漪后DMN功能磁共振成像信号显著增加,但在其他海马电生理事件后未观察到这种增加。至关重要的是,我们发现涟漪后持续的DMN活动增加,但在其他RSN中没有增加。我们的结果将内源性DMN波动与海马涟漪联系起来,从而将网络水平的静息态功能磁共振成像波动与行为相关的回路水平神经动力学联系起来。