Suppr超能文献

前额皮质网络模型中的空间学习和动作规划。

Spatial learning and action planning in a prefrontal cortical network model.

机构信息

Laboratory of Neurobiology of Adaptive Processes, UMR 7102, CNRS-UPMC Univ P6, Paris, France.

出版信息

PLoS Comput Biol. 2011 May;7(5):e1002045. doi: 10.1371/journal.pcbi.1002045. Epub 2011 May 19.

Abstract

The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive "insight" capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates.

摘要

海马体和前额叶皮层(PFC)之间的相互作用对空间认知至关重要。除了海马体的位置编码外,前额叶的代表还提供了更抽象和层次化的记忆,适合用于决策。我们构建了一个前额叶网络,用于介导空间学习和行动规划的分布式信息处理。特定的连接和突触适应原则塑造了以皮质小柱排列的网络的递归动力学。我们展示了 PFC 柱形组织如何适合从冗余的海马体输入中学习稀疏的拓扑度量表示。网络的递归性质支持多层次的空间处理,允许环境的结构特征被编码。激活扩散机制通过柱群人口传播神经活动,从而进行轨迹规划。该模型为解释在导航任务中记录的 PFC 神经元的活动提供了一个功能框架。我们说明了从单个单元活动到行为反应的联系。结果表明,支持认知“顿悟”能力的神经机制是合理的,这种能力最初归因于托尔曼和霍恩齐克的啮齿动物。我们对神经反应的时程分析表明,海马体和前额叶皮层之间的相互作用如何能够对与空间规划相关的多种信息进行编码,包括前瞻性编码和目标距离相关物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4f4/3098199/3d563641833b/pcbi.1002045.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验