Suppr超能文献

冲击波碎石术中冲击-气泡-结石相互作用的多相流固耦合分析

Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy.

作者信息

Wang Kevin G

机构信息

Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, 24061, VA, USA.

出版信息

Int J Numer Method Biomed Eng. 2017 Oct;33(10). doi: 10.1002/cnm.2855. Epub 2017 Jan 13.

Abstract

A novel multiphase fluid-solid-coupled computational framework is applied to investigate the interaction of a kidney stone immersed in liquid with a lithotripsy shock wave (LSW) and a gas bubble near the stone. The main objective is to elucidate the effects of a bubble in the shock path to the elastic and fracture behaviors of the stone. The computational framework couples a finite volume 2-phase computational fluid dynamics solver with a finite element computational solid dynamics solver. The surface of the stone is represented as a dynamic embedded boundary in the computational fluid dynamics solver. The evolution of the bubble surface is captured by solving the level set equation. The interface conditions at the surfaces of the stone and the bubble are enforced through the construction and solution of local fluid-solid and 2-fluid Riemann problems. This computational framework is first verified for 3 example problems including a 1D multimaterial Riemann problem, a 3D shock-stone interaction problem, and a 3D shock-bubble interaction problem. Next, a series of shock-bubble-stone-coupled simulations are presented. This study suggests that the dynamic response of a bubble to LSW varies dramatically depending on its initial size. Bubbles with an initial radius smaller than a threshold collapse within 1 μs after the passage of LSW, whereas larger bubbles do not. For a typical LSW generated by an electrohydraulic lithotripter (p  = 35.0MPa, p  =- 10.1MPa), this threshold is approximately 0.12mm. Moreover, this study suggests that a noncollapsing bubble imposes a negative effect on stone fracture as it shields part of the LSW from the stone. On the other hand, a collapsing bubble may promote fracture on the proximal surface of the stone, yet hinder fracture from stone interior.

摘要

一种新型的多相流固耦合计算框架被用于研究浸入液体中的肾结石与碎石冲击波(LSW)以及结石附近的气泡之间的相互作用。主要目的是阐明冲击波路径中的气泡对结石弹性和断裂行为的影响。该计算框架将有限体积两相计算流体动力学求解器与有限元计算固体动力学求解器耦合在一起。在计算流体动力学求解器中,结石表面被表示为动态嵌入边界。通过求解水平集方程来捕捉气泡表面的演化。通过构建和求解局部流固和双流体黎曼问题来施加结石和气泡表面的界面条件。该计算框架首先针对三个示例问题进行了验证,包括一维多材料黎曼问题、三维冲击波 - 结石相互作用问题以及三维冲击波 - 气泡相互作用问题。接下来,给出了一系列冲击波 - 气泡 - 结石耦合模拟。该研究表明,气泡对LSW的动态响应因其初始大小而有显著差异。初始半径小于阈值的气泡在LSW通过后1微秒内坍塌,而较大的气泡则不会。对于由电液压碎石机产生的典型LSW(p = 35.0MPa,p = -10.1MPa),该阈值约为0.12mm。此外,该研究表明,不坍塌的气泡会对结石断裂产生负面影响,因为它会使部分LSW与结石隔离。另一方面,坍塌的气泡可能会促进结石近端表面的断裂,但会阻碍结石内部的断裂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验