Suppr超能文献

碎石机冲击波与单个惯性空化气泡的相互作用。

Interaction of lithotripter shockwaves with single inertial cavitation bubbles.

作者信息

Klaseboer Evert, Fong Siew Wan, Turangan Cary K, Khoo Boo Cheong, Szeri Andrew J, Calvisi Michael L, Sankin Georgy N, Zhong Pei

机构信息

Institute of High Performance Computing, 1 Science Park Road, #01-01 The Capricorn, Singapore Science Park II, Singapore 117528.

出版信息

J Fluid Mech. 2007;593:33-56. doi: 10.1017/S002211200700852X.

Abstract

The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed.

摘要

研究了冲击波(建模为压力脉冲)与初始呈球形振荡的气泡之间的动态相互作用。在冲击波冲击下,气泡发生非球形变形,并使用边界元法(BEM)通过势流理论确定气泡周围的流场。该方法的主要优点是其计算效率。重复模拟过程,直到气泡表面的两个相对侧相互碰撞(即沿冲击波传播方向形成射流)。计算气泡的坍塌时间、形状和射流速度。此外,基于水击压力理论估算冲击压力。还确定了开尔文冲量、动能和气泡位移(均在射流冲击时刻)。总体而言,模拟结果与碎石机冲击波与单个气泡相互作用的实验观测结果(使用处于不同振荡阶段的激光诱导气泡)相比具有优势。模拟结果证实了实验观测结果,即对于中等尺寸的气泡,在收缩阶段当气泡的坍塌时间近似等于冲击波的压缩脉冲持续时间时,会发生最强烈的坍塌,射流速度和冲击压力最高。在此条件下,入射冲击波的最大能量被传递到正在坍塌的气泡。此外,还讨论了气泡内含物(具有不同初始压力的理想气体)和气泡的初始条件(初始振荡与非振荡)对冲击波 - 气泡相互作用动力学的影响。

相似文献

1
Interaction of lithotripter shockwaves with single inertial cavitation bubbles.
J Fluid Mech. 2007;593:33-56. doi: 10.1017/S002211200700852X.
2
Lithotripter shock wave interaction with a bubble near various biomaterials.
Phys Med Biol. 2016 Oct 7;61(19):7031-7053. doi: 10.1088/0031-9155/61/19/7031. Epub 2016 Sep 20.
3
Shock-induced collapse of a gas bubble in shockwave lithotripsy.
J Acoust Soc Am. 2008 Oct;124(4):2011-20. doi: 10.1121/1.2973229.
4
Shock-induced collapse of a bubble inside a deformable vessel.
Eur J Mech B Fluids. 2013 Jul;40:64-74. doi: 10.1016/j.euromechflu.2013.01.003.
5
Experimental study on the collapse behavior of cavitation bubbles under low ambient pressure conditions.
Ultrason Sonochem. 2025 Mar;114:107255. doi: 10.1016/j.ultsonch.2025.107255. Epub 2025 Feb 7.
6
Experimental study on influence of particle shape on shockwave from collapse of cavitation bubble.
Ultrason Sonochem. 2023 Dec;101:106693. doi: 10.1016/j.ultsonch.2023.106693. Epub 2023 Nov 10.
8
Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
Sci Rep. 2019 Feb 4;9(1):1352. doi: 10.1038/s41598-018-37868-x.
9
The dynamics of a non-equilibrium bubble near bio-materials.
Phys Med Biol. 2009 Oct 21;54(20):6313-36. doi: 10.1088/0031-9155/54/20/019. Epub 2009 Oct 7.

引用本文的文献

1
Facilitatory effect of low-pulse repetition frequency ultrasound on release of extracellular vesicles from cultured myotubes.
J Med Ultrason (2001). 2024 Jul;51(3):397-405. doi: 10.1007/s10396-024-01429-9. Epub 2024 Apr 4.
4
The interaction of shockwaves with a vapour bubble in boiling histotripsy: The shock scattering effect.
Ultrason Sonochem. 2021 Jan;70:105312. doi: 10.1016/j.ultsonch.2020.105312. Epub 2020 Aug 18.
5
Bubble dynamics in a compressible liquid in contact with a rigid boundary.
Interface Focus. 2015 Oct 6;5(5):20150048. doi: 10.1098/rsfs.2015.0048.
6
Bubbles with shock waves and ultrasound: a review.
Interface Focus. 2015 Oct 6;5(5):20150019. doi: 10.1098/rsfs.2015.0019.
7
Cell mechanics in biomedical cavitation.
Interface Focus. 2015 Oct 6;5(5):20150018. doi: 10.1098/rsfs.2015.0018.
8
Shock-induced collapse of a bubble inside a deformable vessel.
Eur J Mech B Fluids. 2013 Jul;40:64-74. doi: 10.1016/j.euromechflu.2013.01.003.
10
Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles.
J Acoust Soc Am. 2011 Nov;130(5):3531-40. doi: 10.1121/1.3626157.

本文引用的文献

1
Interaction between shock wave and single inertial bubbles near an elastic boundary.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Oct;74(4 Pt 2):046304. doi: 10.1103/PhysRevE.74.046304. Epub 2006 Oct 16.
2
Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
J Acoust Soc Am. 2005 Oct;118(4):2667-76. doi: 10.1121/1.2032187.
3
Shock wave interaction with laser-generated single bubbles.
Phys Rev Lett. 2005 Jul 15;95(3):034501. doi: 10.1103/PhysRevLett.95.034501. Epub 2005 Jul 11.
4
Innovations in shock wave lithotripsy technology: updates in experimental studies.
J Urol. 2004 Nov;172(5 Pt 1):1892-8. doi: 10.1097/01.ju.0000142827.41910.a2.
5
Shock-wave-induced jetting of micron-size bubbles.
Phys Rev Lett. 2003 May 30;90(21):214502. doi: 10.1103/PhysRevLett.90.214502.
6
The role of stress waves and cavitation in stone comminution in shock wave lithotripsy.
Ultrasound Med Biol. 2002 May;28(5):661-71. doi: 10.1016/s0301-5629(02)00506-9.
8
The mechanisms of stone fragmentation in ESWL.
Ultrasound Med Biol. 2001 May;27(5):683-93. doi: 10.1016/s0301-5629(01)00345-3.
9
Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy.
J Acoust Soc Am. 2001 Mar;109(3):1226-39. doi: 10.1121/1.1349183.
10
Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL.
Ultrasound Med Biol. 2001 Jan;27(1):119-34. doi: 10.1016/s0301-5629(00)00322-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验